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ABSTRACT

Based on potential flow theory, a formulation is given for three-

dimensional fully cavitating flow with a Riabouchinsky model. The model

is nonlinear and the location of the free surface of the cavity is not

known priori. Therefore, an iterative procedure is used to locate the

free surface boundary. The employment of a trial-free-boundary approach

effectively reduces the fully nonlinear model to a linear one, and the

solution at each iteration is obtained by means of the finite element

method (FEM). Examples studied were fully cavitating flow past flat

plates in a water tunnel. Results are given for pure drag flows past

circular and elliptic plates and a lifting flow past a circular plate.

Theree-dimensional, 20-node, quadratic isoparametric finite elements

are used. The locations of the mid-side nodes on the free-surface just

off the edge of the plate are found to have significant effects on the

separation condition which must be enforced while keeping the Jacobian

of the isoparametric transformation nonsingular. The free surface is

shown to be a characteristic surface and this leads to the development

of a weighting scheme for assigning the free surface potential in the

iterative scheme the shifting of the free surface. A new three-dimensional
"local" iterpolation scheme for the location of the mid-side nodes is

also developed for the lifting flow configuration.

The various algorithms were tested against known analytic solutions

as well as published numerical and experimental results in two-dimensional

and axisymmetric flows. Results from several pure-drag three-dimensional

geometries are presented and the cavity shapes and the tunnel wall effects

are examined. Then lifting flow results are given.

Because of the change in flow boundary conditions at the separation

edge and the failure of the FEM to resolve these conditions accurately,

the ability of the numerical solution to maintain a constant pressure over

the entire cavity decreases as the three dimensionality of the free surface

increases. However, the present procedure produces absolutely stable

iterations and shows no sign of drifting of the free surface. It is

found that satisfaction of a tangent separation condition of the free
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i
surface from the flat plate body is crucial for the stability of the iterative

procedure. Grid refinement in both the streamwise and transverse directions

reduces the computational error. While free surface movement between

iterations is a useful convergence criterion, a flow-rate balance between

upstream and downstream cross-sections appears not to be a good criterion.

Finally, alternate formulations which may reduce the difficulties

encountered are discussed.
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NOMENCLATURE

fr A area of the foil

A surface area of an element
.S

A- B width of the cavity at the centerline

C D drag coefficient

C lift coefficient
L

* 2
CD normalized drag coefficient: CD , D/(jpq S)

CL normalized lift coefficient: CL = !/(Ipq S)

* = -P 2
C normalized pressure coefficient: Cp= (P )/(jpq )

Pc c
D half-dpeth of the water tunnel

E. equivalent nodal value due to a uniform surface load

F force on the foil

J Jacobian matrix for the isoparametric transformation

e
K j elemental stiffness matrix

Kij global stiffness matrix

direction cosine

L lift

L half-length of cavity

N shape functions
i

P pressure (Section 2)

P radius of circular plate or minor axis of elliptic plate

upstream pressure

P pressure in cavityc

P Pressure at the plate

P2n polynomial of degree 2n

q magnitude of the velocity qector
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qc magnitude of the velocity vector on the free surface

q magnitude of the velocity vector at the foil
p

qs magnitude of the velocity vector along a streamline

Q flow through arbitrary cross-section (Section 2)

Q major axis of elliptic plate

R. forcing terms due to flux boundary

r polar coordinate

S largest possible projected area of the foil (Section 2.1)

S curvilinear streamwise coordinate

Uw uniform horizontal upstream velocity

v velocity in y-direction

V average free-stream velocity on the free-surface

I VC  average velocity contributed by all elements at a node

VF average velocity at separation contributed by elements on the

free surface

V average velocity at separation contributed by elements on the
S

solid boundary

w velocity in z-direction

W half-width of water tunnel

x Cartesian coordinate

y Cartesian coordinate

z Cartesian coordinate

L curvilinear axis

O angle of attack

8 curvilinear axis

y curvilinear axis

6ij Dirac Delta function

E criterion for convergence
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axis in the three-dimensional isoparametric space

TI axis in the three-dimensional isoparametric space

e polar coordinate

V nodal connection matrix

Ci axis in the three-dimensional isoparametric space

[ P fluid density

a cavitation number

velocity potential

D boundary values of

W i weights for the Gaussian integration formula

w. area of influence of node i

s i o

t.
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1. INTRODUCTION

1.1 OVERVIEW

4 The analytical study of wake and cavity flows began in the 19th

century when Kirchoff introduced an idealized, inviscid-flow, infinite-

length-cavity model with free streamlines and solved the accompanying

4" problem via the conformal-mapping technique. Since then, numerous

researchers have investigated different aspects of the problem, both ana-

lytically and numerically. The development of underwater missiles, high

speed hydrofoils and propellers accelerated the research efforts on the

analysis of and design for cavity flows. Models were subsequently formed

to investigate flows with finite cavities. The Riabouchinsky model, the

re-entrant jet model, the open wake model and the vortex model are some of

those being used (see, e.g., Wu, 1972).

Cavity flow problems, as represented by potential flow models, are

nonlinear. The problems are complicated by the unknown shape and location

of the free boundary. For two-dimensional cavity flows, methods, such as

the hodograph mapping which is derived from the theory of analytic functions,

can be employed to transform the problems onto complex planes where the

problem is solved by singular-integral-equation techniques. The evaluation

of these functional equations is very difficult in general because of the

nonlinearity. But, by and large, the two-dimensional problem for steady

state flows has been solved (Tulin, 1963; Street and Larock, 1968; Wu, 1968).

Though efforts have been made to solve the three-dimensional case,

there is still no known exact solution or generally usable and fully non-

linear model for the analysis of the three-dimensional fully cavitating flow

(see the review of numerical methods for solution of three-dimensional cavity

flow problems by Street, 1977). He points out that the techniques for the

numerical solution of three-dimensional, fully cavitating flows, based on

linearized methods and the method of matched asymptotic expansions, are

presently available. However, he also points out that these techniques

rely on the use of two-dimensional characteristics of the flow applied strip-

wise in the three-dimensional flow field and that the area of fully nonlinear

methods is still developing.
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Among the linearized models are Widnall's (1966) lifting-surface

model, which was found to compare unsatisfactorily with experimental data

by Tsen and Guilbaud (1974). The disagreement was credited to the non-

linearity of the physical problem. Nishiyama (1970), with the assumption of

large aspect ratios, was able to reduce the lift'ng-surface problem to a

lifting-line problem but achieved similar results as Widnall (1966). Jiang

and Leehey (1977) combined the essence of these two theories and produced

calculations that appear to be the best within the limitations of the

linearized theory.

Furuya (1975), using two-dimensional nonlinear streamline theory in

the near field and Prandtl's lifting line theory for the far field, and

Leehey and Stellinger (1975), using higher order perturbation theory, have

gone beyond the linearized models and developed, not linear, but yet not

fully nonlinear models. Neither model accounts for wall effects, although

Furuya's (1975) model can handle the motion of foils beneath free surfaces

in water of infinite depth. A three-dimensional fully nonlinear model is

needed for the study of hydrofoils with finite-aspect-ratio and the inter-

pretation of the results from water tunnel tests. It was, therefore, the

goal of this research to develop a computational procedure for the simula-

tion of three-dimensional flow about fully cavitating hydrofoils.
Numerical techniques which are commonly used in free surface flow

computations are reviewed in Section 1.2. Section 2.1 describes the physi-

cal formulation while Section 2.2 gives the finite element (FE) approximation

of the three-dimensional fully cavitating flow problem. The computation of

flow rates and areas in the FE representation is described in Section 2.3.

Section 2.4 describes the characteristic of the free surface which leads to

the development of a weighting scheme described in Section 3 together with

the iterative procedure for the location of the free surface. Section 4

then gives the implementations and tests of the algorithms while computa-

tion results are given in Section 5. Section 6 contains a discussion

errors and alternative approaches. Section 7 combines the conclusions and

suggestions of possible future work.
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1.2 REVIEW OF NUMERICAL TECHNIQUES

There are several major categories of numerical techniques which can

be applied to free surface flows. There are finite-difference and finite-

element methods. Amongst the finite-difference methods one finds formula-

tions in which the problem is solved in a stream function and velocity

potential space or in which the solution is found from the distribution of

singularities on the free surface of the flow (normally called a boundary

integral technique). The application of all these techniques to both two-

and three-dimensional free surface flow problems is described below.

1.2.1 Two-Dimensional Methods

Mogel and Street (1974) used a finite-difference technique and solved

a problem of flow past a disk in a water tunnel by employing a Riabouchinsky

model and imaging to achieve an exact formulation. Irregular finite-

difference stars were employed along the curved free surface boundary. A

* '4very refined finite-difference grid was also used in the neighborhood of the

separation point on the flat plate. The solution of the finite-difference

equations for the velocity component was achieved by successive over-

relaxation. Because the velocity components were employed as the unknowns,

the solution required simultaneous satisfaction of the Laplace equation for

each velocity component and of the nonlinear free surface boundary condi-

tions. The solution converged and gave reasonable results. However, the

cost for the two-dimensional case was subsequently found to be equal to the

cost for a solution of similar accuracy for a three-dimensional disk-in-

water-tunnel flow by the finite-element method (see Sec. 5).

Brennen (1969) combined a finite-difference technique with a mapping

to stream function--velocity potential space to solve the axisymmetric flow

past a circular disk in a circular water tunnel using a Riabouchinsky

model. A difficulty with the extension of this technique to more general

bodies is that the solution is inverse because the stream function--velocity

potential space solution must be mapped back to physical space to obtain

the final geometry. Brennen's results are used for comparisons with the

finite element solution obtained from the three-dimensional model later in

the present work.
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White and Kline (1975) developed a general method for the solution of

turbulent, separated, axisymmetric flows. In their general development

they employed a new boundary integral technique for the potential flowfield

outside the boundary layers developing in their diffuser flows. Unlike

grid techniques, the boundary integral method requires computation of un-

knowns only over the flow boundary. The solution technique obtains the

potential flow from the numerical solution of Green's third identity and

iteratively solves for the correct location of an initially unknown free

surface. In principal this technique can be extended to general three-

dimensional flows. Interestingly, a very similar technique was developed

in 1953 by Armstrong and Dunham (1953). They applied a vortex sheet singu-

larity to free streamline flows, thereby generating an integral equation

whose solution formed part of an iterative procedure to locate the initially

unknown free surface. They solved several axisymmetric cavity flows in an

infinite fluid field and obtained reasonable agreement with experiment.

The application of the finite element method to free streamline flows

was first made by Chan, et al. (1973 a,b). They showed that the finite

element method could be used to solve for the velocity potential in two-

dimensional and axisymmetric ideal fluid flows involving a free surface.

Sarpkaya and Hiriart (1975) applied a similar technique to solve the free

streamline problem of flow in curved jet deflectors.

1.2.2 Three-Dimensional Methods

Jeppson (1972) developed an inverse formulation for three-dimensional

flows in which he defined a velocity potential and two additional functions

which defined the flow paths. By changing the conventional roles played by

the variables of the problem, he converted a free surface with an unknown

position in physical space into a plane of known position in the inverse

stream function--velocity potential space. The technique is very similar

to that of Brennen (1969) sited above and suffers the same disadvantage,

namely that the shape of curved solid bodies cannot be prescribed in advance

in physical space.

Larock and Taylor (1976) applied finite-element techniques to solve

the jetflow from a circular pipe and orifice under the influence of gravity.

4

v



The resulting flow is slightly three-dimensional, namely, the jet remains

essentially circular but droops under the action of gravity creating a

three-dimensional flowfield. They employed the velocity potential as the

dependent variable and quadratic isoparametric finite elements in the flow-

field discretization. Again, as in other free streamline problems, an

iterative procedure had to be used to determine the free surface location

whose precise location is initially unknown. They found "convergent" solu-

tions when the jet is not too far from being horizontal (i.e., at high

Froude number). However, they reported that "a number of small shifts (of

the free surface between two consecutive iterations) can accumulate to a

nonnegligible effect." Plausible reasons for the inability of their pro-
cedure to converge at low Froude numbers and for the drift of their solu-
tion are advanced later herein as the present work is described.

In summary, the works of Mogel and Street (1974), Brennen (1969),

and Larock and Taylor (1976) are of special interest. Although developed

only for two-dimensional flow and based on a finite difference scheme, Mogel

and Street (1974) provided the basic framework for the present study and

development of a three-dimensional finite element model. Brennen (1969)

found good agreement between his solution and experiments. Hence, his

problem was solved herein by the finite element method as a check of the

present three-dimensional model. Larock and Taylor (1976) provide an illus-

tration of the application of the finite element method to a three-

dimensional problem and gave us insight to problems to be expected and key

features to be incorporated into a model.

5
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2. FORMULATION FOR FULLY CAVITATING FLOWS

2.1 PHYSICAL MODEL DESCRIPTIONS

One common consideration which enters into the development of cavity

flow models is the problem of the closure of the cavity. In the

* Riabouchinsky model, the closure of the cavity is achieved by a mirror

*image of the foil in the downstream direction as shown in Figure 2.1,

with section C being the plane of symmetry. In the present study, the

Riabouchinsky model centered within a water tunnel of uniform geometric

cross-section is used. It is assumed that both ends of the water tunnel can

be extended far away from the foils so that a uniform horizontal velocity

can be maintained at the entrance. Because of the symmetry in the flow

geometry, only one-eighth (for the pure drag case) or one-quarter (for the

lifting case) of the flow field need to be considered.

The flow is assumed to be incompressible, steady and irrotational.

Hence, it is governed by the velocity potential which satisfies the

Laplace equation, in Cartesian coordinates,

2 2 2

ax ay2  az2

within the flow field and

ax

v - (2.2)ay

W - A
az

where u, v and w are the components of the velocity in the x, y, and z

directions, respectively. Their magnitude q (u + v + w . If the

effect of gravity is neglected, the Bernoulli equation becomes

6
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1 2
P + 1pq - constant (2.3)

where P is the pressure and p is the fluid density. Since the free

surface is also a constant pressure surface, from the Bernoulli equation,

Equation 2.3,

2 v2  2u + v = q = constant (2.4)

on the free surface and the change of velocity potential * on the free

surface along a streamline is given as

Ls q (2.5)
as

Also the free surface can be described by the streamline conditions, namely,

dx = d dz (2.6)
u v w

which mean that the velocity vector is tangent to the free surface.

Because of the symmetry of the flow model, the plane of symmetry

(section C, Figure 2.1) of the Riabouchinsky model is also an equipotential

surface. Without loss of generality, the potential there can be set to

zero. With a prescribed uniform horizontal upstream flow (with velocity

U ) and no flux conditions at solid boundaries (tunnel walls and the foil),

the problem is well defined. However, the location of the free surface is

not known a priori. An iterative procedure is described in Section 3 for

determining the location of, as well as the constant pressure condition on,

the free surface. As a result of using such a trial-free-boundary method,

only a linear system of equations has to be solved at each iteration.

The most important nondimensional parameter for cavity flows is the

cavitation number a defined as

P - P
CO ca 1(2.7)

7



where the subscript c denotes the cavity. Equality of cavitation numbers

is an indication of the dynamic similarity of two geometrically similar

cavity flows. Using Equation 2.3, one can show that

2" q
S- 1 (2.8)

U2

The force on the foil is given by

F f J(P - P) dA (2.9)

where subscript p denotes the foil (a plate herein) and A is the area

of the foil. From Equations 2.3 and 2.9,

2

F2 Jq dA (2.10)

For the pure drag problem, F is the drag. For a plate at an angle of

attack I the drag D is given by

D - F sini

and the lift I is given by

T F cos 3 (2.12)

The drag and lift coefficients, CD and CL respectively, are given as

follows:

D
CD -1 2 (2.13)

pUW S

and

C L 1 1 2 (2.14)

8



where S is defined as the largest possible projected area of the foil.

It is often convenient to normalize CL and CD  on the velocity qc on

the free surface. Then,

C /(+a) (2.13a)

and

C L 1 2 (2.14a)
TPqc S

where the reslationship between a, q and U. is given by Equation 2.8.

2.2 FINITE ELEMENT MODEL

The finite element method (FEM) was originally developed in the 1950's

in the field of structural engineering and used because of its efficiency in

stress analysis of large structural systems. Since then, the FEM has become

one of the commonly used methods for the approximate numerical solution of a

wide spectrum of engineering problems. One of the advantages of the finite

element approximation is its simplicity and efficiency for handling irregu-

lar boundaries and variation in mesh sizes which are necessary to the solu-

tion of free surface problems.

In the FEM, the solution domain is discretized into subregions, called

elements, which are defined by their node points (often located at the

corners and mid-sides of elements). The FEM then represents the problem solu-

tion as a continuous function by using approximation or interpolation func-

tions within each element. These functions are defined in terms of the

solution valu.es at the finite set of node points. The solution varies locally

within each element according to the form determined by the interpolation

function; these normally are prescribed via a summation of a set of shape (or

basis) functions. Partial differential equations are then transformed to

integral equation formulations which are subsequently replaced by a well-

posed set of algebraic equations for the values at the node points.

9

.4



2.2.1 Finite Element Approximation

As described in Section 2.1, the fully cavitating flow problem is

nonlinear because of the unknown location of the free surface. However,

the nonlinear solution can be achieved by solving a series of linear prob-

lems through the use of an iterative procedure which is described in Sec-

tion 3. It is the linear problem associated with each iteration which is

solved by means of the FEM. In particular the velocity potential 0 is

determined for a given configuration then the result is used to determine

a more accurate free surface shape. As the application of the FEM to gen-

eral field problems, i.e., the determination of p , is well documented

(see, e.g., Huebner, 1975), only a brief description is given here.

The solution domain a is discretized into the subregion elements.

Each element is defined by node points as shown in Figure 2.2. The contin-

uous unknown function 0 is approximated by the interpolation function deter-

mined by the unknown values at all the node points in the domain. The

local variation of the solution within each element is determined by the

shape functions because the solution is expressed as a linear combination of

the products of the values of the shape functions and the ,defined at

each node point of the element, i.e.,

n
e= Z N e (2.15)

i=l

where the superscript e denotes values for element e . The subscript i

denotes values defined for the ith node point, n is the total number

of node points for each element and Ni are the shape functions; e is

a subset of

Shape functions are classified by two characteristics, viz., first,

the degree of variation within each element, such as linear, quadratic,

etc., and, second, the order of continuity of the solution function

between elements, e.g., C0  continuity to ensure the continuity of the

solution function between boundaries of elements, C1 continuity to ensure

the continuity of the solution function as well as its first derivatives

between boundaries of elements, and so on. However, all shape functions

satisfy the following condition:

10
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Ni(x, yj, z) 6ij (2.16)

The total number of node points n per element is fixed by the choice of

shape functions. The choice of the shape function for the present study

is addressed later in this section.

The linear problem to be solved at each iteration is the Laplace

equation for the velocity potential , namely,

ax 0x in~ (2.17)

(smmation notation is used) with boundary conditions

(a) c - (xi) on S1  (2.18)

(b) Z + g(xi) = 0 on S2  (2.19)

where Z are the direction cosines of the outward normal to the surface

S2  (Figure 2.2). This problem is actually solved by application of the

variational (Ritz) approach, which uses the variational form of the differ-

ential equation rather than the differential equation itself. Thus, the

solution 0 minimizes the functional

'2(
- f( dxi + g~dS2  (2.20)2 n x i  f

It can be shown that there exist a set of values i , defined at all the

node points of a finite element mesh, which yield, through the basic func-

tions, the best approximation to the continuous solution 0 of the differ-

ential equation. It can also be shown that this best approximation is

unique (Prenter 1975, p. 196). If the total functional is taken to be the

sum over all elements, minimization of the functional, Equation 2.20, leads

to the following:

11
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* ~iall ai

elements

elements[. x ey ) z -

+ 'e g-- dS (2.21)

a22

The validity of the summation on the righthand side of Equation 2.21 is

assured by the right choice of shape functions. Zienkiewicz (1971, Section

3.2) gives two criteria to be satisfied by the chosen shape functions. The
shape functioas chosen herein meet these criteria; in particular, as only the

function 0 and its first derivatives appear in (2.21), a C0  element and

its shape functions are needed.

From Equations 2.15 and 2.21, one obtains, for each element,

Ki J R e = 0 (2.22)

where the elemental "stiffness" matrix K is given by
ii

e  f (IN, !j +Ni NJ Ni INJ eK = x + 2_ _ dQe (2.23)i xax ay Dy az 3z

and the forcing term due to the flux boundary condition on S2 is given by

Ri -  f gNi dS2  (2.24)

Se

22
Note that, if none of the node points of an element is on S 2 9 the forcing

i term Re vanishes. The global equation is obtained by summing over the

elemental equations, i.e.,

12



Kij + Ri = 0 (2.25)

Equation 2.25 is a set of linear algebraic equations from which the

can be obtained. The global stiffness matric Ki is positive definite and

symmetric. Both direct and iterative methods for solving this large sparce

linear system are reviewed in Appendix 2.

2.2.2 Isoparametric Transformation and Numerical Integration

In order to handle irregular boundaries and variation in mesh sizes,

a special class of finite elements, the isoparametric finite elements, is

used. The idea of using elements with curved sides seems to have originated

with Taig (1961) and was generalized by Irons (1966) and Ergatoudis, et al.

(1968). The isoparametric transformation uses a set of shape functions to

map an irregularly shaped element, which is defined in physical space by

means of its node points, onto a regular cube defined in a local coordinate

1 system as shown in Figure 2.3.

Herein, a set of quadratic shape functions is employed. Accordingly

in three-dimensions, each isoparametric, C , finite element has 20 node

points. The transformation is given explicitly as

20
x = Nx i

i=1

20
y = NiY i  (2.26)

i=l J2

20
Z Z N z

where Ni  N are the shape functions. For isoparametric elements,

the shape functions Ni employed in the coordinate transformation (Equation

2.26) are the same as those employed to represent the unknown field variables

(see Equation 2.15). The quadratic shape functions appropriate for the

20-node "serendipity" element (Huebner, 1975) used here are:

13



for corner nodes, i.e., n = i + 1

N( + + n + + nn - 2)

for midside nodes at 0 , i + 1

N 1 2 (1+ n + i)

(2.27)

for midside nodes at = 0, = ,,+ 1

Ni - 1( + i (I - n2)(1 + ci )

for midside nodes at O, ifni = + 1:
1 ;2

N = 1 + Ui)(1 + ni) (l -2

These Ni satisfy the constraint, Equation 2.16.

The essence of the transformation is contained in the Jacobian matrix:

a a a
ax 3~ az

Ja ay a (2.28)

aT an an

which is unique for every element. Hence, the derivatives of the shape

functions are related as

8Ni  aNi

ac ax
a~i  aNi3 -N [J] 3 (2.29)

an ay
• aNi 1

4 az

14



It can also be shown that

dxdydz = tJJ d~dnd4 (2.30)

However, this transformation is valid if and only if the Jacobian i~l is

nonsingular in an element. If the transformation is consistent, then the
sign of the Jacobian 1J1 is the same in all elements. It is well known

(see, e.g., Strang et al. 1973, 3.3) that all interior angles at the

corners of an element should be bounded between 0 and 7 , and the midside

nodes must lie in the middle half of the sides of the element to guarantee

nonsingular Jacobians. It is also true that unique relations between the

physical (x, y, z) and local ( , n, ) coordinate systems do not exist

for elements which fold back upon themselves, i.e., those with singular

tJacobians.

Whenever an unique transformation exists, the integration of any

function, say u(x, y, z), defined in physical space can be performed in

isoparametric space (local coordinate system) such that

1Y~f +1 +1 +1
ji(x,y,z) dxdydz = u(x( ,f,4), y( ,f,4), z( ,f,4))"

IJ d~dndC (2.31)

The triple integral on the righthand side of Equation 2.31 can be approxi-

mated by means of a Guass-Legendre quadrature formula which will integrate

exactly a polynomial of degree 2n - 1 or less as follows

P dx = Z i Pn(2.32)
112n-l Wi P2n-l(Xi)

where xi are the zeroes of the Legendre polynomial of degree n and wi

are the weights. For a triple integral,

u( ,n,4)dgdnd - Z E WW u(Ei,pjk) (2.33)
i-l j-1 k-l
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The locations and the corresponding weights can be found in subroutine Gauss

described in the Program Manual (Ko and Street, 1979).

2.2.3 Implementation of Boundary Conditions

With an assumed location of the free surface, the geometry of the

flow field is defined and can be discretized. As noted in Section 2.1,

only one-eighth (for the pure drag case) or one-quarter (for the lifting

case) of the total flow needs to be considered because of the symmetry of

the flow geometry. A schematic of the flow field employed in the FEM solu-

tion (for a pure drag case) is shown in Figure 2.4 for the purpose of illus-

trating the boundary conditions. It is obvious that no-flux conditions are

required at the tunnel wall, the plane of symmetry and the surface of the

foil as indicated in Figure 2.4. Actually the free surafce is also a no-flux

tboundary. However, the no flux conditions is satisfied only if the free

,- surface is at its true location, where the constant pressure conditions is

also satisfied. Therefore, the no-flux condition cannot be imposed at the

free surface during the iterative procedure, but the final solution must

satisfy such a condition.

2.2.3.1 Flux Boundary--Uniform Flow Upstream

A uniform flow U is imposed at some reasonable distance

upstream from the foil or plate. Because the FEM expresses the continuous

solution of the problem in terms of the values at node points, flow distrib-

uted over the surface of an element has to be represented by the equivalent

nodal values specified at the node points which define the surface.

Zienkiewicz (1971, p. 168) has given some distribution values for the allo-

cation of a unit uniform surface load for rectangular surfaces when the mid-

side nodes are placed at exactly the 1/2 (quadratic shape function) or 1/3

(cubic shape function) points along the sides of the elements. However, for

surfaces with curved sides or where the mid-side nodes are not at symmetri-

cal locations, one has to evaluate an integral for the equivalent nodal

values Ei due to a uniform surface load as follows:

Ei - fUN dxdy -UffN dxdy U i (2.34)
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th
where E is the equivalent nodal value at the i node, Uo is the

i C
uniform surface load (in the present case, being the uniform flow upstream),

Ni s the shape function and i- ffN dxdy is the weight of the ih

k node. Also, Z, can be interpreted as the area of influence of the tt

node and has the following property:

n i = As  (2.35)

i=l

where n is the total number of node points on the surface and As is the

area of the surface. The evaluation of can be done in isoparametric

space as

t Wj .L dxdy -Ni.) 171 d~dn (2.36)ff.e 'i f+i C'

where Ni . the two-dimensional quadratic shape functions as used in the

present study, are given as (cf., Equation 2.27 for the three-dimensional

shape functions):

for corner nodes: i.e., i + 1, i + 1 1

N 1( + i)(1 + nn i )( i + nni - 1)

for mid-side nodes at i=0 , nl : (2.37)

Ni - 1l - 2)(l + Tin '

for mid-side nodes at W 0 , i + 1

i (+ 2

and the Jacobian of the transform is given as:

ax a

LX ayIJI~ - 2.38)
a x a_7

an an
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The evaluation of the integral (Equation 2.36) for w can be accomplishad

by means of a Guass-Legendre quadrature formula similar to the one given

* by Equation 2.33.

2.2.3.2 Boundary Conditions on the Free Surface

From Equations 2.5 and 2.6, it follows that two boundary condi-

tions must be imposed on the free surface. If the potential at the equi-

potential plane of symmetry (Section AA, Figure 2.4) is set to zero, the

potentials at the node points along any assumed streamline, which issues

from the edge of the plate or foil, can be estimated according to the

constant pressure condition (Equation 2.5) by integration back from

Section AA, such that (referring to Figure 2.5),

Si

4)1 4)+± (-q) dS (2.39)

: S

where the subscript i refers to values at node points along the same

streamline and the superscript j refers to different streamlines on the
j+l/2free surface. The potentials at mid-nodes, such as S i , are inter-

polated from the values at the adjacent corner nodes, Si and Sj+l . To

start the iterative procedure, q is estimated by use of the upstream

uniform flux and a mass conservation balance, subsequently, q is adjusted

to satisfy the separation tangency condition.*

The second boundary condition, e.g., the tangency of the free sur-

face to the velocity vector (Equation 2.6) is used during the iterative

procedure to create new (better) free surfaces by integration downstream

from the separation surface on the foil.

2.2.3.3 Effect of Mi-side Node Locations at Separation

The singular properties of isoparametric elements have been

observed and studied by several investigators (e.g., Henshell et al. 1975,

*In-flow equals out flow almost exactly once the solution has been iterated

a few times and a mass balance is no longer a meaningful test. See
Sec. 5.
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Barsoum, 1976) in the field of structural analysis. They have demonstrated

the possibilities of producing strain singularities of order x-1/ 2 by

placing the mid-side nodes of two-dimensional, quadratic, isoparametric

elements at the quarter point along an element side from the corner where

the singularity occurs. However, it can be shown that, as a consequence,

the Jacobian of the isoparametric transformation is singular; therefore, it

may generate undesirable behavior near the singularity. In fact, Hibbitt

(1977) showed that in the case of the quadrilateral element used by Barsoum

(1976), the strain energy of that element is unbounded even though good

numerical results were reported by Barsoum (1976). A similar procedure is

used in the present study to improve the behavior of the solution at separa-

tion; however, the Jacobian of the isoparametric transformation is kept

nonsingular here.

Consider a surface of an element just off the edge of the foil as

shown in Figure 2.6. It is desirable for the present physical realization

to have (i) the edge a asymptotically perpendicular to the foil at the

separation point S , and (ii) the edge B asymptotically tangent to the

foil at the separation (the Kutta condition). From the isoparametric map-

ping of the edge a , it can be shown that

dz O  .z1 - 4z9 + 3z13
dx 13 X1 4x9 +  13 (2.40)

To satisfy condition (i), one needs to have (dz/dx)ll 3  in Equation

2.40 which leads to

z- 4z9 + 3z = 0

z9- z13 (z134- zl) (2.41)

It is clear from Equation 2.41 that the edge a has zero slope at the

separation point S if the mid-side node #9 is placed at the quarter point

location from corner node #13 in the z-coordinate. The x-coordinate of

mid-side node #9 is still arbitrary. However, to avoid having a singular
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Jacobian for the transformation, the x-coordinate of the node #9 should be

kept away from the quarter point location. Condition (i) also ensures the

continuity of the x-derivative (x-component of the velocity vector in the

present study) of the field variable as one moves down the body and past

the separation point S (across the element boundaries) and onto the free

surface. This character is essential to an accurate satisfaction of the

Kutta condition (u E 0) on the horizontal component of velocity at separa-

tion.

Similarly, from the mapping of edge ,

dz IB  3z3 + 4z1 - z1
dz 13 

+  14 15 (2.42)

d113 3x13 + x14 -x15

condition (ii) requires Equation 2.42 to be infinite at the separation point

S . This is achieved by setting the denominator of Equation 2.42 to zero;

hence,

-3x1 3 + 4x14 - xi1 5 - 0

x14  x 1 3 - x (2.43)

Therefore, as far as the local shape of the free surface is concerned, the

tangent separation condition is satisfied at every iteration if the mid-side

node #14 is placed at a quarter point location in the x-coordinate. Similar

to the case for condition (i), the z-coordinate of the mid-side node #14 can

be arbitrary except that it cannot be at the quarter point location in z

because then the Jacobian I~ of the transformation will become singular.

However, it is shown later that the effect of satisfying the "local" separa-

tion condition in this manner is not significant. One can conclude that the

local behavior of the free surface within the element at separation is not of

paramount importance; however, the summed behavior (i.e., the average value

of the velocity at a node) does seem to be crucial as shown below.
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2.3 COMPUTATION OF AREAS AND FLOWS

In the course of the iterative procedure, it is necessary to compute

areas of arbitrary plane shapes, flows through arbitrary plane cross-

sections, and the sumof squares of the velocities over plane foils of

arbitrary shape. The area of the foil and the sum of squares of the

velocities over the foil are needed in the computations of the drag and

the drag coefficient. The trial velocity on the free surface at Section AA

(Figure 2.4) is initially estimated from the total flows through the up-

stream and downstream cross-sections. All these can be evaluated in a simi-

lar fashion in the isoparametric space.

For areas of cross-sections and foils, one can use Equations 2.35 and

2.36. However, the area of any surface of an element also can be obtained

as

+1 +1

A= f dxdy f 11 d~dri (2.44)
"Se -i -i

S el-

where I7 is the Jacobian of the transformation given by Equation 2.38.

* For a two-dimensional isoparametric element with n node points, the

Jacobian 171 of the transformation can be computed by

1 1122 - 12J21

n

w h e r e J l 1 1 = l1 -1 a

_ n 9N i
J12 ' (2.45)

n aNi
J21 i'i Xi a ,

n 3

22 i i

and N is the shape function of the transformation.
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Similarly, for a flow Q through arbitrary cross-sections, one

has

+1 +1

Q o u dxdy f u 171 d~dn (2.46)fft
"- -l

where u is the component of the velocity normal to the cross-section.

Expressing the velocity in terms of its nodal values and the shape

4 functions Ni yields

U Z ,N Iui  (2.47)

where ui are the known values at the node points of the element. Then,

Equation 2.46 becomes

+1 +1
+1 Z -ui) 11 d~dn . (2.48)

,* -i I il

Equation 2.48 can be generalized to compute the area times the sum of the

squares of the velocity at any cross-section as

+1 +1

Q2 + 11 N iui) 1g d~dn (2.49)

which is needed by Equation 2.10 for estimation of the drag and lift

coefficients. Equations 2.44, 2.48, and 2.49 can be evaluated by means of

a Gauss-Legendre quadrature formula in two-dimensions as described in

Section 2.2.3.
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2.4 CHARACTERISTICS OF THE FREE SURFACE

As mentioned in Section 2.1 an iterative procedure is needed for

determining the location of, as well as the constant pressure condition on,

the free surface. The constant pressure condition is satisfied on each

streamline at each step (this is required by the use of Equation 2.39);

however, the constant pressure condition does not need to be satisfied

across the streamlines (i.e., the pressure on each streamline may be dif-

ferent from that on its neighbor) until the solution has converaged. This

characteristic is important because as described later, it suggests a stable

iterative procedure.

The location of the free surface is assumed at the start of the iter-

ative procedure. Thereafter, the new location of the free surface is

approximated by moving the present free surface, based on the streamline

conditions (Equation 2.6) along rays of constant j (Figure 2.5), such

that the new free surface is tangential to the velocity vectors computed

on the old free surface. Velocities on the free surface at any iteration

are known functions of the spatial coordinates (xy,z in Cartesian coordi-

nate system) having been determined from differentiation of the velocity

potential field which was determined for a given geometry prior to shifting

of the free surface.

Generally, any given surface can be described by

F(x,y,z) - 0 (2.50)

or specifically by

F - X(y,z) - x - 0 (2.51)

From differentiating Equation 2.51, one obtains

dx - Xydy + Xzdz (2.52)

where the subscript denotes partial differentiation with respect to that

variable. However, for the free surface which is tangent to the velocity

field, one can write (cf., Equation 2.6)
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dx
dt

v (2.53)dt

dx
dt 

V

From Equations 2.52 and 2.53, one finds

vX + wX - u (2.54)
y Z

as the equation of the free surface. It can be shown that (Street 1973,

Chapter 9) Equation 2.54 is a first-order, quasi-linear partial differ-

ential equation which has characteristics given by

dx AX= d z C2.55)
u v w

and a unique solution determined by the passage of the characteristics

through a single noncharacteristic curve on the surface. Equation 2.55

is exactly the same as the streamline conditions given by Equation 2.6.

Therefore, the free surface is a characteristic surface. Furthermore, the

non-characteristic curve is precisely the separation curve which represents

the edge of the foil. Thus, the solution to the problem hinges, first, on

an accurate integration of Equations 2.55 or 2.6 and, second, on an accurate

representation of the velocity field, in particular, the conditions at the

separation curve. As we demonstrate below, the first condition is easy to

satisfy; the second is not. If errors creep in at separation the exact

characteristic through each node on the separation curve uniquely repre-

sents different flow conditions. Accordingly, one can expect progressive

divergence of the iterative solution (cf., Larock and Taylor, 1976, where

drift of the solution is noted).

Only when the solution has converged, can one say that the computed

characteristic surface must feel the same pressure everywhere (i.e.,

constant pressure and only then need qj be the same for all j in
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Figure 2.5). [Note that the magnitude q of the velocity is related to

.the pressure by Equation 2.3.] Accordingly, during the course of the

iterative procedure, it is possible to adjust the qJ from streamline to

streamline, such that the separation velocity at each node tends toward

an average value typical for all nodes on the separation curve. This leads

to the development of a weighting scheme described in Section 3 and tends

to keep the shifting streamlines on the same characteristic surface.
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3. ITERATIVE PROCEDURE

The problems which remain to be solved after the formulation in

Section 2 are two. First, because the trial-free-boundary method is used,

[the problem for the velocity potential 0 is reduced to a well-posed

linear problem. Under the finite element method used here, a linear system

of algebraic equations is all that must be solved (See Appendix 2).

Second, however, the correct location for the cavity free surface

must be obtained. This can be accomplished by an iteration procedure in

which sequentially one prescribes a best estimate of the cavity surface

and then finds the corresponding values. From these, velocities are

determined and they give the basis for prescribing a new free surface

location.

3.1 OVERVIEW OF THE ITERATIVE PROCEDURE

The iterative procedure is needed to determine the correct location

of a cavity free surface which is tangent to the flow velocity and on which

the constant pressure condition is accurately satisfied. The step by step
iterative procedure is described in this sub-section. Detailed descriptions

of specific schemes are given in the following two sub-sections.

The procedure consists of seven steps as follows:

Step 1: Geometry Setup

With given shapes and sizes of the plate and water tunnel and an

assumed initial location of the free surface, the solution domain is well

defined. It is then discretized into finite elements of variable sizes.

Smaller elements are used in regions where high resolution is required, for

example, near separation or zones of rapid changes in flow direction.

From a computational point of view, the actual discretization of the

solution domain is done separately. (The mesh generation procedure is

described in Appendix 1.) Then the coordinates of all corner nodes together

with the corresponding nodal numbers become inputs to the actual flow-

computation model. The mid-nodes of all elements are interpolated auto-

matically by the computer program.
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Step 2: Boundary Conditions

An uniform horizontal velocity U. is imposed upon the upstream

cross-section of the water tunnel (cf., Section 2.2). The velocity

potential 0 on the free surface is estimated from the assumed location

as described in Section 2.2. At the solid boundaries and the planes of
symmetry, the no flux condition is imposed. In the FEM, this natural

boundary condition is assumed by the program when neither nor a flux
are prescribed.

Ste 3: Generation of Stiffness Matrices

With the established coordinates of the node points from Step 1,

the elemental stiffness matrices, K e of Equation 2.23, are generated.

Because of the great amount of data being generated, these elemental stiff-

ness matrices are usually stored on magnetic disks or tapes.

Step 4: Solution for the Velocity Potential

The velocity potential is determined by solving Equation 2.25. How-

ever, the global stiffness matrix Kij is not formed explicitly. Methods

for solving this large sparse linear system are reviewed in Appendix 2.

Step 5: Computation of Velocity Field

The fluid velocities are calculated by differentiating the velocity

potential ci as

e n 3N i
= TX9 i , j - 1, 2, 3 (3.1)

where the subscript i denotes values defined for the ith  node point,

n is the total number of node points for each element and N. are the1

shape functions. Equation 3.1 gives the fluid velocities in three direc-

tions at all node points of element e. For node points that are common

to more than one element, the fluid velocities are taken to be the alge-

braic average of the contributions from all adjacent elements.

Step 6: Relocation of Free Surface and Test of Convergence

This step is the substantial focus of this work and many details

are given in subsequent sections. To avoid the evolution of a divergent

solution, the free surface location is actually changed only when the
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magnitude of the velocity component normal to the plate at separation is

less than a prescribed value. (This leads to a system which always satis-

fies the Kutta or tangent flow separation condition.) If the separation

velocities satisfy this condition as described in Section 3.3, the free

surface is relocated such that the new free surface is tangent to the

velocity field which existed at corresponding node points on the previous

free surface. The details of the relocation procedure are considered in

Section 4.1. Next, the criterion for convergence is checked (cf., Section

4.2). If it is satisfied, the iteration is terminated and the solution has

been obtained. Otherwise, the mesh in the near vicinity of the free surface

is adjusted and the elemental stiffness matrices for those elements which

were moved are replaced. Since only those elements which are near the free

surface are moved, a relatively small number of elemental stiffness matrices

need to be replaced.

Step 7: Boundary Conditions for the Free Surface

From the new location of the free surface, the velocity potential $

on the free surface can be estimated according to Equation 2.39. However,

the separation edge represents a boundary singularity (Crank and Furzeland,

1978) at which two types of boundary conditions meet, namely, the no flux

condition and the prescribed velocity potential . The error in the

solution c at this point was shown by Crank and Furzeland (1978) to be a

function of nodal placement; a similar relation can be expected for the FEM,

i.e., the error decreases as element size decreases (see Section 6).

A significant and supplementary effect may enter in the present case,

however. In the true three-dimensional case the curvature of streamlines

varies along the separation line and the streamwise rate of change of the

potential * will, therefore, be different at different nodes along the

separation line. Accordingly, we believe that the boundary-condition-

discontinuity error is not constant along the separation surface. To com-

pensate for this we have constructed a special scheme for adjusting the

potential on individual streamlines (also see Section 6).

After the first iteration when the potential 0 is calculated from

the downstream end of the cavity, we alter the separation values of the

ir potential and then prorate that value to other nodes along the surface such
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that a constant velocity is obtained on each streamline. However, this

produces a different constant velocity on each streamjine. As the solu-

*; tion converges (in the sense that the cavity surface does not move signifi-

cantly), one hopes that the final velocity differences are small. As is

shown in Section 3.3, where the weighting scheme is described in detail,

[t there is no guarantee that the hope will be realized.

The iteration Steps 4 through 7 are now repeated until convergence

is obtained.

3.2 INTERPOLATION AND EXTRAPOLATION SCHEMES

During the course of the iterative procedure, the free surface

location is adjusted by satisfying the tangency conditions on the free

surface (Equation 2.6). It is necessary, subsequently, to regenerate the

segment of the finite element mesh adjacent to the free surface. The mid-

side nodes on the free surface are relocated in such a way that the free

* surface remains smooth. Those nodes lying along a streamline are naturally

and smoothly relocated during relocation of a streamline by integration

from the separation point. However, an interpolation scheme is needed to

relocate nodes between streamlines. Because of the symmetry of the physical

problem for the pure drag case, a two-dimensional interpolation scheme is

sufficient. However, for the lifting flow case, a three-dimensional scheme

is necessary.

3.2.1 For the Pure Drag Case

Referring to Figure 2.4, one sees that, if the movements of the node

points on the free surface are restricted such that the corner nodes always

lie on planes of constant x , a two-dimensional interpolation can be used

to locate the y and z coordinates of mid-side nodes at any cross section

of constant x given that the location of the corner nodes is known.

Because of the symmetry of the physical problem with respect to the y and

z axes as shown in Figure 3.1, a periodic cubic spline interpolation

expressed in terms of the circular coordinates 6 and r is chosen with

the boundary condition re_0  - rie-2  . However, an algorithm for

unequally spaced knots (nodes) is required. Since the theory of spline
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interpolation is well documented, readers are referred, e.g., to de Boor

(1978) for a detailed treatment on the subject. However, the algorithm

used in the present study is taken from Spath (1973, Ch. 4).

3.2.2 For the Lifting Flow Case

In order that the effect of mid-side node locations at separation as

described in Section 2.2.3.3 be the same in the lifting flow at all itera-

tions as in the pure drag case, it is necessary to have the mid-side node

#14 (Figure 2.6) at the 1/4 distance from the separation point S in a

transformed x' direction which is perpendicular to the plate as shown in

Figure 3.2. Consequently, it is desirable that the movements of all of

the node points on the free surface be restricted such that the corner nodes

always lie on planes of constant x' as illustrated in Figure 3.2. However,

then the nodes at the "end" of the new (relocated) free surface may fall

short of or over the centerline (C) so that extrapolation or interpolation,

respectively, is necessary to align the corner nodes with the centerline.

Unlike the pure drag case, a general three dimensional algorithm for unevenly

spaced data is needed here.

Interpolation with irregularly spaced data has long been a subject of

interest for numerical analysts. Among the methods used, one can find

methods based on local bivariate interpolations (e.g. Akima, 1978) as well

as methods with multivariate smoothing splines (e.g. Fulker, 1975). These

methods in general, are very expensive and relatively difficult to use.

Following the concepts inherent in the isoparametric finite elements as

used in the present study, a "local", general, three-dimensional interpola-

tion and extrapolation scheme by means of isoparametric mapping has been

developed. This new scheme is found to be applicable in two, as well as in

three, dimensions.

The two-dimensional result is obtained first. Consider the isopara-

metric transformation given in Equation 2.26 and the shape functions given

in Equation 2.27 (cf., Equation 2.37 for the two dimensional shape functions)

and imagine that the z axis in the physical coordinates is identical with

the axis in the local courdinates. Then, the transformation degenerates

to a two-dimensional problem. Referring to Figure 3.3 and mapping the side
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with 1, one has the following

2
x x+ (x x) + (x + x 2x

5 8 3 2 '385' 2'
I-

2
y y+(2y.) + yry-2y)(3.1)Y ffi Y5 N Y Y3)  2 + (Y3 + Y8 -25 2  (3.1

< -l n <1

where x and y are the coordinates in physical space for any point along

the side Imagine the side of the isoparametric

finite element is arranged so as to coincide with the data points (i.e.,

the known node points) as indicated in Figure 3.3(c). Then, one can use

Equation 3.1 to interpolate the value of y (at the point indicated by

A- the cross, for example), say, for a known value of x between x3  and x.,

first, by solving for the value of n as

! 2
a l2 + a2 +a 3  = 0 (3.2)

where a1  = (x3 + x8 - 2x5)/2

a2  = (x8 - x3)/2 , and

a3 = x - Xl

and second, by evaluating y from the second equation of Equations 3.1.

For interpolation between G - in Figure 3.3(c), one can do the inter-

polation from the left (using U) as well as from the right

(using i-L -L ) and a weighted mean value from the two interpolated

values can be taken as the final solution. From numerical experiments, it

is observed that this weighted interpolation scheme is approximately O(S ,

i.e., fourth order accurate with respect to the side length. However, this

scheme suffers the restriction that node #5 must lie in the middle half of
the side (or for uniqueness in the solution to be

guaranteed.
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One can also extrapolate by means of the isoparametric mapping.

Specifically, given the coordinates of (i)-( 5 and the cross point in

Figure 3.3(c), one can obtain y8 provided that x8 is known at the

extreme point #8. As soon as the value of n is obtained from Equation 3.2,

y. can be found from the following:.Y8

8 . y + (n2 1)Y5 + 2 (1 - O)Y3

R (I + r)
2

where y and n are values for the intermdiate point x.

Should the data points not lie on the same z-plane, one has to add the

third equation 3.1 for z , namely,

2
z z 5 + (z 8 - z 3 ) + (z 3 +z 8 - 2z 5 ) 1 ,

(3.4)

-1 < ni < 1I

where z is the z-coordinate for the intermediate point at n . By means

of this scheme, one can do interpolation or extrapolation in three dimen-

sions with little computational effort and any one of the x , y or z

coordinates can be taken as the independent variable. However, this is

only a local interpolation scheme such that any changes in data beyond the

two points on either side of the interpolated value do not affect the final

solution.

3.3 WEIGHTING SCHEME AT THE FREE SURFACE

As mentioned in Section 3.1, the separation edge represents a boundary

singularity (Crank and Furzeland, 1978) at which two types of boundary con-

ditions meet, namely, the no-flux condition on the solid plate and the pre-

scribed velocity potential 0 from the free surface. Crank and Furzeland

(1978) discuss the nature of this mixed boundary condition singularity. Such

singularities are found in a wide variety of problems and various authors

have used a variety of ways to combat the difficulties introduced by the
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singularity. Of particular value are analytical forms which allow the

singular nature of the problem to be analytically represented within the

context of the numerical scheme. For two-dimensional problems with regu-

lar boundaries (boundaries which are not curved), significant success has

been achieved with such analytical patches. On the other hand, the present

cavity flow problem has both curved boundaries and irregularly-sized finite

elements in three dimensions. It is not clear that an analytical patch of

the nature required could be developed for three-dimensional physical space

or perhaps in the isoparametric space. In any case, an alternative approach

used by many authors is grid refinement near the singularity. In the end,

because the error in the solution for velocity potential at the singu-

larity present here was shown by Crank and Furzeland (1978) to be a function

of nodal distance, it was decided to use mesh refinement for the present

solution. Although Crank and Furzeland (1978) demonstrated specifically
the behavior in the neighborhood of a singularity for a finite difference

solution similar behavior occurs for finite elements (e.g., see Strang and

Fix, 1973, Sec. 8.4). It was expected, then, that by reduction of the finite

element size in the neighborhood of the separation point the error which is

manifested in the present problem by failure to satisfy the tangent-separa-

tion condition exactly could be systematically reduced.

The separation condition requires that the velocity normal to the

surface of a body at separation be zero and that the flow be wholly tangen-

tial. With the present error due to the mixed boundary condition singularity,

the normal velocity at different points along the separation edge is non-zero

and variable. As shown in Section 2.4, the free surface is essentially a

characteristic surface. From Section 2.2.3.3 it is known that the stream-

lines leave the separation surface tangential to the solid surface. If then

the separation condition is not satisfied exactly, the governing first-order-

partial-differential-equation for the free surface is not uniformly satisfied

at the separation points. This occurs because, while the characteristic lines

(or streamlines) are tangent to the body, they are not tangent to the velocity

vector there, since the normal velocity at the separation point is non-zero.

If the separation condition is not uniformly satisfied at each point along

the separation edge, the streamlines from the separation edge each represent

different physical flows. Accordingly, one might expect progressive divergence
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of the iterative solution. Interestingly, Larock and Taylor (1976), who

made no effort to impose a tangent-separation condition for their jet flow

from an orifice, found that their solution tended to drift and that, under

circumstances in which the flow was more highly three dimensional, conver-

gence was either slowed or not obtained at all.

It became necessary, then, to devise a scheme whereby the velocity

potential *s at the separation edge could be adjusted to control satis-
faction of the tangent-separation condition. This led to the development

of the weighting scheme described below. From the computed velocities normal

to the plate at various separation points, one can derive a set of weights,

one for each separation point and streamline, which adjust the velocity

potential at separation such that the normal velocity at each separation

point is zero within a certain limit. The limit was usually set as follows:

Max Velocity normal to the < 1-2 (3.5)
plate at separation <10

After the value of the separation velocity potential 0s is determined,

values for the new velocity potential along the appropriate streamline are

Aapportioned to the node points of the streamline such that AO/As constant.

Since 4 equals S at separation and 0 is zero at the center line of
S

the cavity, the free surface velocity on a streamline becomes q which is

equal to 0s divided by the length of the streamline in question. Then

the new set of free-surface velocity potentials 0, are used as the

Dirichlet boundary conditions on the free surface for the next iteration;

however, since s is determined to make the normal velocities zero, qs

is not necessarily the same on each streamline. This is the genesis of the

main difficulties encountered herein.

This weighting scheme produced an absolutely convergent iterative

process. Other schemes which we employed gave unstable or divergent

iterative processes except in those cases in which the flow was two-dimensional,

i.e., axisymmetric or plane flows. The drifting of the streamlines reported

by Larock and Taylor (1976) did not occur. Detailed results are discussed in

Sections 4.2, 5 and 6; however, the general procedure in solving problems

using the weighting scheme is as follows. To start, the upstream flow is
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prescribed and held constant throughout the procedure. With the assumed

location of the free surface, the free surface velocity can be estimated

from a continuity argument applied to the upstream face of the computation

region and the center line of the cavity. Weights are equal to unity in the

first iteration; therefore, the velocity potential s on the free surface

at separation equals the length of a streamline times the estimated constant

velocity on the free surface. The problem for s is then solved, and the

velocities at separation are computed. Based on the magnitude of the velocity
normal to the plate, the weights are adjusted such that, when they are

multiplied with the original velocity potential 0s at separation, the sepa-

ration condition should be satisfied. For example, if there is a positive

normal velocity in a pure drag flow, such as that depicted in Fig. 2.4, the

velocity potential 0s will be increased to reduce this positive normal

f velocity. These new values of the velocity potential s at separation are

- then prorated to the nodes on each streamline proportional to the distance

along the streamline as indicated above. The problem is now solved again.

This procedure is repeated until the separation criterion is satisfied, and

the free surface is then moved. With the new location of the free surface,

the resulting new problem is solved again (as above) until convergence is

obtained. Because continuity is satisfied after one or two iterations, the

solution is considered to have converged when the stream surface stops

moving. This is normally taken to occur when no change occur in the fourth

significant figure for the physical location of any free service point on

the cavity center line, i.e., at the downstream end of the computational

area, over several iterations. During the iteration procedure, it was often

found to be more economical to adjust the weights manually between each

iteration. This enables the user to lead the iterative process to more

rapid convergence and reduce the cost of the computation. In the cases

studied here, the circular arc and elliptic pure drag cases were iterated

with user itervention until the first move of the free surface. Automatic

correction was used thereafter. Lifting flow cases were iterated manually.

See Ko and Street (1979).
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4. IMPLEMENTATIONS AND TESTS

4.1 SPECIFIC IMPLEMENTATIONS

In Section 2.2.3, the implementation of the boundary conditions was

addressed. It was found that the condition that the free surface be tangent

to the surface of the foil at the separation point is satisfied by the

quarter point location of the first mid-node. This is true asymptotically

for the particular set of shape functions chosen. However, another method

was considered, namely, patching in an analytic solution for the free sur-

face shape (at the separation point) similar to the one used by Mogel and

Street (1974). In two-dimensional flow, the form of the free-surface near

the separation point varies with the two-thirds power of the distance away

from the point, i.e.,

y 2/3(4.1)

with equality given by

C2/3

y A C4.2)

where C , the constant of proportionality, is determined solely by the

velocity-components at the free surface at a horizontal distance x from

the separation point. Assuming that the flow near the separation point is

essentially two-dimensional (locally), the relationship given in Equation

4.1 is used in the three-dimensional case with y being measured perpen-

dicular to the edge of the foil and in a direction tangent to the foil.

This analytic patching algorithm was implemented and tested with the pure

drag flow cases. It was found, oftentimes, that analytic patching caused

initially a very sharp curvature of the free surface such that a smooth

continuation of the rest of the free surface was impossible. When converg-

ence was obtained, the patch had no significant effect on the results com-

pared to cases without the patch. Therefore, the patch technique was

dropped from the program as an option for free surface moving routine.
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During the iterative procedure, the free surface is relocated based

on the tangency of the velocity vector to the free surface. This is

achieved by satisfying Equation 2.6 in the form

dx u

dz = w
dx u

Equations 4.3 can be solved by direct integration, with the intermediate

values of u , v and w being interpolated linearly between node points,

which is consistent with the quadratic finite element approximation. A

fourth-order Runge-Kutta procedure is used. However, at the first element

next to the separation edge, the inverse of the Equation 4.3 has to be used

to avoid infinite slope at the separation, namely,

dx u
dy v

(4.4)

dx ut
dz w I

By means of Equations 4.4, one can also specify the zero slope conditions,

namely,

dx dx 0 (4.5)dy dz

at the separation point. However, this did not seem to be crucial for the

iterative procedure to converge.

4.2 VERIFICATION OF ALGORITHMS

In order to test the performance of the selected algorithms the

present procedure has been tested against the best data available. Although

there is not exact solution for the present three-dimensional cases with

which to compare, it is hoped that the individual tests performed give
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insight into the overall performance of the procedure. Two types of tests

were undertaken. First, two-dimensional flows were tested, viz., a plane

cavity flow and an axisymmetric flow were solved by use of the three-

dimensional program. Second, the free surface shift algorithm was tested

alone for a fully three-dimensional flow.

4.2.1 Two-Dimensional Geometries

Because the flow-field has some basic symmetry, no variations are to

be expected with depth (that is across the flow) in the plane flow or in

azimuth for the axisymmetric flow. Accordingly, the weighting scheme of

Section 3.3 was not employed. The normal velocity at separation approaches

zero then only as a consequence of the natural iteration process and is not

controlled or otherwise constrained except by the adjustment of the free

surface velocity to yield balanced inflow and outflow. The velocity poten-

tial on the free surface is prescribed then according to Equation 2.5 for

every iteration.

One two-dimensional geometry was selected from among those reported

in Mogel and Street (1974) as an example of the behavior of the three-

dimensional program for a two-dimensional flow. As shown in Figure 4.1 a

flow was constructed which has a typical cavity configuration in thie plane

of flow and is one element deep. If the program is operating correctly,

there are no driving forces to cause the front and back faces of the element

with respect to depth to have different values of the unknown potential or

velocities. Accordingly, the correct program will lead to a convergent

solution in which the values at the corresponding points of the front and

back faces of any element are essentially equal and the flow remains two-

dimensional. When tested the present procedure yielded a converged solution

in 23 iterations. The criterion for convergence was defined as

< 10-2 (4.6)

with e being the maximum movement of any node-point on the free surface

between two consecutive iterations. Figure 4.2 shows the sequence of the

movement of the free surface in the present case. Interestingly the three-

dimensional, finite element code is found to be no more expensive for this

38



case than the two-dimensional method used by Mogel and Street (1974) for

a solution of similar accuracy. However, in their paper it was possible

to prescribe exactly that the x-component of the fluid velocity vector at

separation from the plate is identically equal to zero. In the present

case the shape function used in the finite element method leads to an

x-component of the velocity at separation of the order of 10- 2 times the

maximum velocity on the free surface.

Working in stream function-potential space Brennen (1969) solved the

axisymmetric cavity flow past a circular disk in a circular water tunnel.

He used a Riabouchinsky image model and a finite difference numerical

technique. His numerical results were verified by a series of experiments.

It is, therefore, a good test of the present procedure to compare the

finite element result with Brennen's results for a typical case. Actually,

three cases with different geometric dimensions were chosen for the tests.

Converged solutions for all three cases were achieved with no weighting

(cf., Section 3.3).

The results of these tests are shown in Figure 4.3 together with the

curves presented by Brennen (1969). It is clear that the finite element

and Brennen techniques are in precise quantitative agreement. In addition

this test shows that if, as a consequence of flow geometry the discretiza-

tion through the finite element prescription occurs unfiormly across the

flow, then errors in flow separation velocity likewise occur uniformly and

the weighting scheme described in Section 3.3 is not necessary in order for

the iteration procedure to be stable; however, it leads to the same results

as obtained here.

4.2.2 Three-Dimensional Geometry

The analytic solution for a uniform flow past a three-dimensional

Rankine Oval is well-known. In particular, for a particular prescription

of the oval geometry, i.e., length and width, one knows the exact surface

geometry of the oval and the entire velocity field surrounding it. It is

possible then to use this information to test the present algorithm for

moving the free surface without being involved with the discretization,

truncation or computation errors inherent in solving for the potential and
ir



velocity fields in a given case. We begin by generating a regular, three-

dimensional, geometric mesh for a typical cavity flow past a disk in a

water tunnel, for example, as shown by the solid lines in Figure 4.4.

Then the three-dimensional Rankine Oval is placed in the cavity such that

the edge of the disk coincides with the analytic boundary of the oval at

some convenient point. At each iteration the velocity field is thus com-
puted from the analytic solution for the Rankine Oval and the free surface

is moved from its original position in accordance with the analytic velocities

for the Oval and the free surface moving algorithm as shown in Figure 4.4.

The moved free surface converges to the analytic shape of the Rankine Oval.

The accuracy obtained with a reasonable number of iterations is of the order

of four to six significant figures.

From the results of the above tests, it is clear that the finite

element method is more efficient than the finite difference method used by

Mogel and Street (1974). From the tests of the plane and axisymmetric two-

dimensional flows it is clear that the iterative procedure is absolutely

convergent in those cases in which the representation of the separation

velocity at the start of the free surface is not influenced by true three-

dimensional effects. Further, the Rankine Oval test shows that if the

velocity field is accurately represented the iterative procedure for moving

the free stream surface is rapidly and stably convergent to any desired

level of accuracy. We will see, however, in Sections 5.1 and 5.2 that

discretization errors and the variations introduced by truly three-dimensional

flows (those about strongly elliptic plates and lifting flows) can cause

either an unstable iteration or convergence to a solution in which the free

stream surface pressure is not constant as one moves across or transverse

to the streamlines of the flow.
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5. CAVITY FLOW RESULTS

One of the objectives in developing the present model is to gain the

ability to simulate nonlinear, fully cavitating flows about hydrofoils. As

mentioned in Section 1, there is not a fully nonlinear, three-dimensional

model that can be used for design purposes. Consequently, design is often

based on water tunnel experimental data. However, the data collected from

water tunnel experiments is strongly related to the physical configuration

of the experimental setup. The present model makes it possible to examine

the effects of different physical configurations. Thus, one has direct

insight into the interpretation of experimental results.

In this section results are presented for three flow geometries. In

Section 5.1 pure drag flows past circular and elliptic plates in rectangular

water tunnels are described. A lifting flow consisting of a circular plate

0.
at an angle of attack of 60 in a rectangular water tunnel is given in

Section 5.2

Before examination of these flows it is crucial to understand the

accuracy of presented solutions, which will be discussed in detail in

Section 6. Because of the separation edge singularity reviewed in Section

3.3, the ability of the numerical solution to maintain a constant pressure

(or velocity) over the entire cavity decreases as the three dimensionality

of the free surface increases. The pressure (velocity) is closely constant

streamwise or along each streamline; however, as one moves across the flow

transverse to the streamlines the pressure (velocity) changes. The causes

and potential cures for this effective error in the solution are covered in

Section 6.

The effective error is, thus, negligible for all of the circular

plate pure drag cases in which the cavity cross section is close to being

circular. These solutions are essentially exact. The total difference

between free stream velocities in the elliptic plate cases is of the order

of five percent (10 percent for the pressure coefficient). However, for

the lifting flow, the total free stream velocity difference between the

leading and trailing edge streamlines is about 10 percent (21 percent for

the pressure) which is unacceptable.
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5.1 RESULTS FOR THREE-DIMENSIONAL, PURE DRAG CASES

5.1.1 Circular Plates in Square Water Tunnels

A circular plate with a two unit radius is used with three different

square water tunnels with widths of 10, 15 and 20 units. This configuration

was chosen because it is the simplest variation from an axisymmetric flow

L. with a circular plate in a circular water tunnel (as solved by Brennen, 1969;

see Figure 4.3). The circular plate is placed at a distance of 10 units

from the upstream boundary at which a uniform flow is assumed (i.e., F - 10;

cf., Figure 2.4). Due to the symmetry of the setup as mentioned in Section

2.1, only a quarter of the flow field needs to be solved. For the water

*tunnels with widths of 10, 15 and 20 units, the half width of the square

tunnel W takes on values of 5, 7.5 and 10 respectively. Two different

half-lengths L for the cavity are used, namely, 5 and 10 units. The

effect of changing the cavity length will be discussed later in this

section. For the case with a water tunnel width of 10 units, the effect of

grid refinewent was also examined (See Section 6.2). The apparent effect

on the results was small, but some conclusions are drawn later in Section

6.2.

The results can be viewed from several perspectives, namely, the

cavity's gross shape, the wall effects, the "stability of pressure coeffici-

ent" observed by Wu, et al. (1971) and Mogel and Street (1974), and the

accuracy of the solution. These are treated in turn in the following

paragraphs.

Interestingly, in all cases examined here, the cavity remains rela-

tively circular in spite of the influence of the square water tunnel (cf.,

Figures 5.1 and 5.2). (For reference the lines are circular arcs in these

figures.) However, the wall effect is substantial.

Normally, one views results at constant cavitation number a and

with various tunnel width to plate radius ratios. Then, a decrease in tunnel

size produces an increase in cavity length for a given a as the flow is

driven toward choked flow. However, it is more convenient with a physical-

space numerical-scheme to hold cavity length 2L constant and let cavitation

number a vary. With cavity length held constant, decreasing the tunnel

size tends to increase a. This results also in a decrease in the B/P ratio
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(cf., Figure 2.4). The corresponding increase in the velocity on the free

surface is observed in Table 5.1. Figure 5.3 shows two sets of curves for

the square water tunnel with two different cavity lengths, namely, L - 5

and 10 units with LP - 2.5 and 5.0, respectively. When W/P is small,

-" a large a is needed to maintain as a short cavity; then the actual cavity[ length becomes relatively unimportant and the cavitation numbers for the

square tunnel should be close together (as shown in Figure 5.3) because the

L/P ratios studied are different only by a ratio of two. This is also true

for the ratio B/P.

From Figures 5.1 and 5.2, one might conclude that the corner of the

square water tunnel had little effect on the cavity shape. However, the

blockage effect is very different from a similar axisymmetric case. Figure

5.3 demonstrates these trends. For large W/P , the wall effects are insig-

nificant and the blockage effect of a circular tunnel is no different than

that of the square tunnel. Therefore, the cavitation number a from the

square tunnel coincides with the similar axisymmetric case for both values

of L/P tested here. However, when the width of the square tunnel (the

radius in the circular case) decreases, the axisymmetric flows feel the wall

effect much faster than the similar square tunnel flows. For the axisymmetric

flows, the cavitation numbers a converge for the two L/P ratios when

W/P decreases, as observed for the square tunnel flows.

Wu et al. (1971) and Mogel and Street (1974) observed that the coeffici-

ent C* C + )l is nearly constant for many flow configurations in

which W/P is varied. Table 5.1 shows that CD  is close to constant in this

three dimensional flow as well. However, while C* appears virtually inde-

pendent of a , C* does increase by about 5% when W/P is reduced by 50%.

Table 5.1 summarizes the results for a particular set of circular-

plate-in-square-tunnel cases. For each case, convergence was certainly

achieved in 25 iterations; actually no significant changes are observed after

15-20 iterations. Convergence means that the velocity components normal to

the plate at separation were less than about 10-2 times the free stream

velocity and no changes were observed in the fourth significant figure of the

cavity streamline end points over several iterations. Contrary to the experi-

ence of Larock and Taylor (1976), no accumulated drift in the streamlines is

observed in the present study.
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5.1.2 Elliptic Plates in Rectangular Water Tunnels

The elliptic plate used by Jiang and Leehey (1977) in their lifting

flow study was chosen for this pure drag flow study. The basic configura-

tion consisted of an elliptic plate with 2.35 unit by 7.75 unit semiaxes

and a 40 unit by 20 unit rectangular water tunnel. With reference to

Figure 2.4, the plate is placed at a distance of 20 units from the upstream

boundary at which a uniform flow is assumed, e.g., F - 20 units. In order

to examine the wall effect, a water tunnel with 80 unit by 40 unit was also

used. Two different cavity half-lengths, namely, 10 units and 20 units,

were used to examine the change of the cavitation number with respect to

the tunnel geometry. The parameters of the studied geometry and the gross

results are given in Table 5.2.

In spite of the influence of the rectangular water tunnel shape, the
t cavity remains essentially elliptic (Figure 5.4). Again, the wall effect

is substantial. As indicated in Figure 5.4, as the ratio of the tunnel half

width to the short semiaxis of the plate W/P decreases from 6.15 to 3.08,

ii the cavity is pushed in toward the center line, and there is an increase in

the velocity on the free surface, i.e., a increases (cases El and E3,

Table 5.2). However, the wall effect on the cavity size due to the decrease

in the ratio of D/Q from 5.16 to 2.58 is very small.

In the elliptic cases tested here, the coefficient C D  showed a

slight dependence on tunnel size, but not on a , the difference being

approximately 5% between the two tunnel configurations. However, this

difference may be due to the error in the constant pressure condition on

free surface (see Section 6).

5.2 RESULTS FOR A THREE-DIMENSIONAL LIFTING FLOW

The final step of the present study was simulation of a lifting super-

cavitating flow in a water tunnel. The geometric configuration is essentially

the same as the pure drag flow with a circular plate of 2 unit radius in a

square water tunnel of 15 by 15 units (,Section 5.1.1). The center of the

plate is placed 10 units downstream from the upstream boundary where an

uniform velocity U. is prescribed. The plate is at an angle of attack a
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of 600. The cavity half-length is 5 units from the center of the plate.

*.7 Figure 5.5 shows the FE mesh in three dimensions. Figure 5.6 shows the

final centerline cavity shape after 5 shifts of the free surface. The

cross-section of the cavity is found to be only a slight variation from

circular (cf., the dashed line in Fig. 5.6). The stagnation point (where

the pressure attained its maximum) is approximately 1/8th of the diameter

of the plate from the leading edge. Figure 5.7 shows the pressure distri-

bution along the centerline of the plate. Both because the separation edge

represents a boundary singularity and because the normal method of computing

the flow velocity breaks down at the separation edge (see Section 6), the

pressure coefficient on the plate does not drop off to zero at separation

as it should. The effect of the velocity calculation is not large and can

be corrected for if the boundary singularity effects were minimized.

Figure 5.8 shows a contour plot of the pressure distribution on the

plate for the lifting flow. Because in the plot straight lines are used

to join the node points the circular edge of the plate appears to have

corners. The intermediate values of the contours are interpolated from

those at the nearby node points. This when coupled with the behavior of

the element interpolation functions and the contour routine interpolation

functions introduce slight wavy variations on the contours. These variations

would be eliminated if more node points were used on the plate. The cavita-

tion number a for this lifting flow is 0.53. The corresponding drag and

lift coefficients C and CL* are 0.63 and 0.37 respectively.
D L

The lifting flow tested here converged to the final solution after 5

free surface relocations. However, it took approximately 30 iterations to

achieve this result. It was clear that it is more economical to manually

adjust the "weights" (cf. Section 3.3) between iterations. By this, human

experience can be employed with judgment to make the rate of convergence

faster. The test problem has 303 elements with 3137 node points. Each

iteration, including setting up the elemental stiffness matrices for all

elements, took approximately 5-1/2 minutes CPU time on the IBM 370/168

computer. The core requirement was 1152 K with approximately 1500 tracks

of disk space on IBM 3300 disks for temporary storage.
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6. PERFORMANCE OF THE SOLUTION AND ALTERNATIVE FORMULATIONS

The computation procedure outlined in Sections 2 and 3 is a relatively

straightforward one. The program structure and basic finite element compu-

tational algorithms were adapted from an existing three-dimensional ground-

water flow code for free surface flows developed by Dr. C. Taylor at the

University of Wales, Swansea. The crucial choices and developments focused

on the iterative method used herein and the means of prescribing and dealing

with the high speed free surface, which has a different boundary condition

than that found in groundwater flw.

Tests to verify the performance of the computational algorithms and to

demonstrate that the computational method reproduced, exactly, existing axi-

symmetric flow calculations were presented in Section 4.2. The capacity of

the method to solve fully three-dimensional cavity flows was demonstrated

in Sections 5.1 and 5.2.

It is now appropriate to examine the nature of the iterative process

that was used in this work, to discuss in detail the accuracy of the three-

dimensional solutions presented in Section 5, and to explore alternative formu-

lations which might remove some of the difficulties encountered with the

present techniques. These three areas are explored in Sections 6.1 through

6.3.

6.1 THE NATURE OF THE ITERATIVE PROCESS

In order to separate the nonlinear cavity problem into linear pieces

it is necessary, first, to establish a trial location of the cavity free

surface, and second, to prescribe on that surface the velocity potential .

When the solution is complete, a correct and exact solution must have a

constant velocity along each streamline of the free surface, and the velocity

on each streamline must be the same as the velocity on adjacent streamlines.

That is, there will be a single constant velocity over the entire free sur-

face. In addition, the actual free surface must be tangent to the solid

plate at the separation edge. While this can be mechanically guaranteed,

i.e., the finite element method forces the physical surface to be tangent at

the body at separation (see Section 2.2.3.3) it is difficult with the present
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method to obtain the condition on the velocity that it be tangent to the

solid body at separation. Both conditions must be met on an actual free

surface. Accordingly, in formulating the problem one is faced with two

requirements: first, create a solution in which the velocity is constant

over the entire cavity; second, create a solution in which the velocity is

tangent, not only to the free surface of the cavity, but also to the solid

body at separation.

While it is obvious that the velocity along a given streamline should

be constant and, hence, that the potential along the streamline should be

specified so that the derivative of the potential with regard to distance

along the streamline is a constant, it is not clear that one can simultane-

ously require the velocity on each streamline to be equal to the same

constant value. Thus, in this work two alternative procedures for specifying

the velocity potential were examined. Only one has been described previously

because the alternative procedure, namely, that used by Mogel and Street

(1974) and (in a three-dimensional flow similar to the present one) by

Larock and Taylor (1976), led to unstable solutions for the present cavity

flow problems. This unstable method consisted of adjusting the potential

* on the free surface such that the velocity was constant everywhere on the

free surface. The velocity was adjusted so as to promote conservation of

mass between the upstream and downstream cross-sections of the cavity flow.

No attempt was made to control the tangent separation condition or to force

the velocity normal to the plate at separation to be zero. The alternative

iteration procedure, which was the one adopted here, is described in detail

in Section 3.3. There, while the velocity was kept constant on each indi-

vidual streamline, it was allowed to vary from streamline to streamline

because the requirement was imposed on the calculation that the tangent

separation condition be satisfied. This led to an exceedingly stable itera-

tion. However, in cases of highly three-dimensional flow, that is, when

the cavity shape was three-dimensional, the converged solution had different

velocities on adjacent streamlines. The size of this error is discussed in

the next section.

The question arises: Why is the ostensibly more logical iterative

procedure unstable? An examination of the detailed print-out for a typical
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convergent simulation by Larock and Taylor (1976) [kindly provided by

Professor Larock] shows that their solution does not satisfy the tangent

separation condition; the velocity normal to the orifice of their jet flow

is of the order of 0.2 to 0.5 times the actual velocity at separation, and

the velocity normal to the plate is different at the top and bottom of their

orifice. For slightly three-dimensional flows such as theirs (and indeed

our circular-plate pure-drag cases) this appears to be of no consequence;
however, we conjecture that failure to satisfy the tangent separation condi-
tion uniformly may be a root cause of the failure of the lower Froude-number

cases of Larock and Taylor (1976) to converge. These flows are more highly

three-dimensional and would appear to suffer from the same errors encountered

in the present work. In the iteration used in the present work the tangent

separation condition is satisfied essentially exactly in the iteration pro-

cess and the velocity normal to a solid boundary is always at least two

orders of magnitude smaller than the average velocity at separation.

Larock and Taylor (1976) noted that, if they continued to iterate their

solution and shift their free surface as indicated by their iterative

procedure, a number of small shifts tended to accumulate to a non-negligible

effect. Thus, their solution tended to drift. If one uses the iterative

procedure developed here and applies it to a flow from an orifice without the

effect of gravity (a problem somewhat similar to that considered by Larock

and Taylor at high Froude numbers), no drift of the solution occurs. Indeed,

for the pure drag slightly three-dimensional cases examined here the itera-

tive procedure described in Section 3.3 works exceedingly well and gives

solutions that are quantitatively accurate. The present method, then, may

be considered perfectly adequate for slightly three-dimensional flows.

However, the problem remains, namely, what is the appropriate formulation

for more highly three-dimensional flows in which the competing free surface

and separation boundary conditions really must be satisfied simultaneous?

The simple iterative procedure in which the separation boundary condition

is not considered failed in the present case because, whenever the free

streamline was shifted, its length changed and a new velocity was predicted

in order to satisfy continuity. The resulting potential on the new free

surface tended to vary irratically at the separation point leading to great
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difficulty in generating a reasonable flow field as a basis for the next

trial-free boundary. However, the iteration procedure which guarantees

satisfaction of the tangent separation condition does not guarantee that

the velocity on all streamlines will be the same because, as the length of

the streamline changes, the average velocity on the streamline also changes,

and that change is different for each and every streamline. If the flow is

close to axisymmetric, that is, if the cavity shape remains essentially

circular, then all of the streamlines tend to change length in about the

same amount and the separation tangency condition imposes approximately the

same constraints. Accordingly, the solution converges very nicely in that

the velocity is essentially constant over the entire free surface (as was

found with the circular-plane and some of the elliptic-plate pure-drag

cases). In the next section the detailed results of these calculations are

examined and hypotheses are developed to explain the behavior and potential

solutions for the problem. Finally, in Section 6.3 examination is made of

alternative formulations which might also solve the difficulty encountered

1 here.

6.2 ACCURACY OF THE SOLUTIONS

6.2.1 Review of Tests and Relevant Results

As indicated in the introduction to Section 5, the separation edge

singularity apparently plays a crucial role in the accuracy of the solutions

for various three-dimensional fully cavitating flows. To test the effect

of grid refinement near the separation edge four additional cases were

examined for the circular plate pure drag flows (cases 7-10 in Table 5.1).

The grid refinement was achieved by twice halving the elements adjacent to

the separation edge. In the unrefined cases (4 and 5 in Table 5.1) the

first corner node from separation and on the free streamline was 0.15 units

downstream of the circular plate (&xI = 0.15). First-level refinement (see

Figure 6.1) used Ax - 0.05; second-level refinement used Ax, = 0.02.

Both long (L - 10) and short (L - 5) cavities were studied. Gross changes

in a , B/P , C* and cavity cross-section were less than one percent as a
D

result of refinement. However, significant changes were observed in the
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velocity at separation and the consequent variation in the velocity along

a given streamline.

Before examining these results a brief note is needed. Larock and

Taylor (1976) point out that with the finite elements used in their paper

(and herein) uniqueness of flow velocities is obtained by averaging all the

velocity values contributed by elements which contain a given node. As an

exception, nodes at the junction of a solid and free surface can be con-

sidered to have in common only the solid boundary and those contributed by

elements which have in common the free surface boundary. Larock and Taylor

say their experience suggests that one should average only the velocities

from elements having a free surface face. Because of the placement of mid-
side nodes near separation at the quarterpoint of an element's side (see

Section 2.2.3.3 or Figure (2.6), the x- or normal-components of the velocity

contributed by the elements with solid faces and contributed by elements

with free surface faces are exactly equal. However, the y- and z- (or

tangential-) components are influenced by whether or not the element has

a free surface or solid boundary. The present tests are in complete agree-

ment with the Larock and Taylor conjecture. To illustrate these points the

following notation is used in subsequent discussions: the velocity at separa-

tion contributed by elements which have a free surface face is denoted by

VF ; the velocity contributed by elements with a solid face is denoted by

VS ; and the average velocity contributed by all elements at a node is

denoted as the computed velocity VC . The velocity denoted by V is the

free-stream average velocity computed by summing the velocities obtained at

the cavity centerline on each streamline and dividing by the number of

streamlines (by the number of corner nodes in the y-direction; see App. 1).

Figure 6.2 shows the effect of grid refinement near separation for the

circular-plate pure-drag cases. Clearly, the accuracy of the VF represen-

tation increases dramatically as the element is refined. However, VC , the

usual average velocity at a node, remains a constant fraction of VF

Therefore, the pressure calculation at separation will remain in error if VC

is used to calculate the pressure there. However, with refined elements

near separation both on the solid plate and on the free surface, the error

in the pressure or drag calculations is negligible. If the finite element
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solution were-exact at the separation point, then V would equal V and
S F

both would equal VC . That is clearly not the case. Some insight can be

drawn from Figure 6.3 for relatively long (L/P - 5) and short (L/P = 2.5)

cavities in these circular-plate pure-drag cases. It appears that as W/P

increases, B/P , i.e., the width of the cavity, increases as well. Hence,

the curvature of a streamline near separation apparently decreases. One

can infer that the "stress at separation" should decrease as W/P increases.

This behavior is clearly shown in Figure 6.3 where both V and VC increase

relative to VF as W/P increases. Therefore, all other things being equal,

the separation behavior of the finite element method becomes less critical

as the wall effects decrease.

Figures 6.4 and 6.5 illustrate that the present technique is a very

accurate solution along each individual streamline and, further, that grid

refinement makes a significant improvement in the solution behavior. Figure

6.4 shows the variation of the free stream velocity denoted by VFS with

distance along the streamline. This variation is presented as a percentage

according to the formula AV/V(%) - [(VFS - V)/VI x 100. The importance of

using VF at separation point is also indicated. For example, if the

averaged velocity at the separation point is used in an unrefined calcula-

tion, the apparent velocity error at separation is almost 22%. However, if

VF is used, the error is only 8%. Similarly the maximum error away from

separation for the refined circular plate case is less than 1%. For the

unrefined case, the value reaches 2-1/2%. However, for most of the stream-

line the unrefined and refined errors are essentially indistinguishable. A

similar plot has been made for the elliptic plate case E2 and is given in

Figure 6.5. This figure has been plotted on a semi-log scale to expand the

region near the separation point. The horizontal axis is the distance

downstream from the separation point plus 0.01 non-dimensional units so that

it will plot on a log scale. It is important to notice here that although

no specific grid refinement was undertaken for the elliptic case, the velocity

error is less than 2% over 99% of the streamline. It is clear then that the

particular method used here is a highly accurate solution along each stream-

line.

One additional experiment was also performed with the circular-plate

pure-drag case. To test the effect of increasing the number of elements in
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the transverse direction in the plane of section A-A (Figure 2.4) , the

number of elements in the transverse or y-direction (see Appendix 1) was

doubled for one pure-drag circular-plate case. In most cases, four trans-

verse elements were used in the quarter flow for this kind of computation.

The test case employed 8 elements. No gross parameter or shape changes

occurred; however, the accuracy with which the no flux boundary conditions

were satisfied on the y -0 and z -0 planes of the flow was increased

by one order of magnitude. This result, together with the refinement tests,

indicates that substantial improvement of flow detail can be achieved by

adding elements, but little gross behavior change appears to occur, at least

in these pure-drag, slightly three-dimensional cases. The information gained

by this test of increasing number of elements in the transverse direction

was put to use in the computation for the elliptic plate pure drag cases.

In case El of Table 5.2, eight elements were used in the transverse or

y-direction. However, the elements nodal points were more or less uniformly

distributed in the transverse direction as can be seen from Figure 5.4 This

produced, in general a maximum velocity normal to the vertical boundary on

the left of Figure 5.4 which was one-half of the vertical velocity through

the upper boundary of Figure 5.4. In addition, the computation converged

rather raggedly. In both cases, E2 and E3, a new geometry was used for the

elliptic cases. The element nodal points were distributed such that in

each element the included angle between lines drawn from the element corner

nodes to the center of curvature of the free surface of that element was

constant for all elements. As can be seen from Figure 5.4, this tends to

bunch the elements near the sharp end of the ellipse and leave rather large

spaces on the flatter, lower end of the ellipse. Interestingly, the rearrange-

ment of the geometry inverted the relationships between the velocities through

the vertical and horizontal faces of the flow, the maximum velocity through

the vertical face now being twice the maximum velocity through the horizontal

face. This is a strong indication that grid refinement in the streamwise

direction and transverse grid refinement and geometry are important in fully

three-dimensional calculations.

As indicated in Section 3.3, the present iteration procedure cannot

guarantee that the pressure will be the same on all streamlines. However,

the procedure does guarantee that the tangent separation condition is
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satisfied to a high degree of accuracy. Figure 6.6 is the variation of

free stream velocity VFS across the end of the cavity for a typical

circular plate and the three elliptical plate pure drag cases. A plot is

made here in terms of node points in the transverse direction. Thus, the

actual location of the individual streamlines must be deduced by referring

to the diagrams for the various flows. In any case, the plot moves from

left to right in the same manner as the diagrams for the various flows.

For the circular-plate cases, case No. 5 which is plotted here contains

the maximum error of any. That error does not exceed 0.7 percent. Thus,

in view of the previous results, the circular plate cases can be considered

to be exact numerical solutions of the three-dimensional fully cavitating

flow. The error in the transverse direction for the free stream velocity

was not significantly influenced by the streamwise grid refinement that was

used in some of the circular-plate cases.

The elliptic plate pure drag cases are much more instructive in regards

to the behavior of the solution because the streamlines at the pointed end

of the ellipse tend to be much more highly curved than those at the flat or

middle edge of the ellipse. The response of the computation to this "stress

at separation" condition is that the free surface velocity is much lower

at the highly curved edge where the computation is unable to maintain the

tangent separation condition at a higher velocity. Interestingly, case El

which uses the old or uniformly distributed geometry for the elliptic flow,

behaves relatively more uniformly than cases E2 and E3 where the method

tends to break down on the smooth edge of the flow where there is very little

transverse resolution. This is consistent with our earlier observations

about the flow velocity through the horizontal and vertical no-flux boundaries

of the flow in the elliptic case.

The error between the maximum and minimum free stream velocities on

individual streamlines is now more significant in the elliptic plate cases

ranging up to a maximum value of about 7% for case E2. This corresponds

approximately to a 14% error in the constant pressure condition if one makes

the computation through the Bernoulli equation 2.3.

The lifting flow with a circular plate set at an angle of attack of

600 in a rectangular water tunnel has more extreme conditions as far as the

curvature of the free streamlines than either of the pure drag cases studied.
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From Figure 5.6 it can be seen that the upper or leading edge streamline

has an extremely small radius of curvature near separation, while the lower

or trailing edge streamline has a very gentle curve. Thus, the free stream

velocity computed by the present technique is much higher along the stream-

line from the trailing edge where the velocity gradient and rate of curva-

ture is smaller so that the tangent separation condition can be more easily

satisfied. If streamwise grid refinement were the essential cure for the

present difficulties, then making the elements near the leading edge separa-

tion should decrease the relative error between the two zones. Thus, one

would expect to more equally satisfy the tangent separation condition and

achieve more nearly the same velocity on each streamline. To pursue this

idea, the first column of elements of separation edge were made smaller at

the leading edge and gradually increased as one moved around the flow

toward the trailing edge as shown in Figure 6.7. Though this refinement

improved the convergence characteristics of the solution and produced more

rapidly a more stable solution, no substantial improvement was observed in

the error which was approximately 10% in the free stream velocity on the

lower versus the upper streamline. In view of the results obtained for the

cricular plate and elliptic plate pure drag cases and the result obtained

here, it would appear that grid refinement should be made in the transverse

direction and that this would lead along with grid refinement in the stream-

wise direction to a better ability for the computational technique to meet

both tangent separation and constant velocity (or constant pressure) condi-

tions on the free surface. No attempt was made to use transverse grid

refinement in the present case because of the cost of the computation.

It is worth noting in passing that during the course of the iteration

for the lifting flow, the flow rate from the downstream end of the cavity

generally converges to its final value which is very close to the inflow

value upstream after two or three moves of the free surface. The flow rate

again appears not to be a good criterion for measuring convergence because

the stream surface continues to move significantly until the fifth or

sixth move. Good values for the lift and drag coefficient are also obtained

after just three moves indicating that for gross values and general results

is not necessary to iterate to a final solution.
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One final test was made with a lifting flow. The tangent separation

condition was required to be satisfied only at the leading edge of the cir-

cular plate. The separation velocity potential was then adjusted at all

other streamline in an attempt to create a free surface with a single

constant velocity. The solution was carried through six free surface shifts.

The results were not satisfactory because the separation velocity at the

trailing edge exceeded the free stream velocity and the cavity surface
P' showed the signs of drifting experienced by Larock and Taylor (1976).

6.2.2 Potential Means to Reduce Solution Errors

The above review makes it clear that the present technique is satis-

factory only in cases in which the curvature of individual streamlines as

they separate from the solid body is essentially the same over the entire

tseparation edge. In conditions when this is not true (for example, in the

lifting flow studied here), the mixed boundary-condition singularity at

the separation point causes the solution to be inaccurate and to make it

difficult to satisfy both the constant pressure (or constant velocity) con-

dition on the free surface and the tangent separation condition. Also,

mesh refinement both in the streamwise and transverse directions tends to

reduce the computational error. There appear to be three specific things

that could be done to tackle this problem.

The first and most direct is simply to increase the number of elements

used in the computation. At the present time the lifting flow utilizes 303

elements with 3,137 node points. Each iteration takes 5-1/2 minutes of CPU

time on an IBM 370/168 computer. Since approximately thirty iterations are

necessary to achieve convergence in the present computation, CPU time alone

runs in excess of two hours per computation. On the other hand, Larock and

Taylor (1976) were unable to examine the convergence behavior with a finer

mesh because they pointed out the refinement must proceed concurrently in

all three directions or else some elements could become highly distorted.

In fact, in the present case the elements are already highly distorted. In

particular, because of the relative small number of elements in the trans-

verse direction, the elements near separation could be viewed as long

curved pencils. It is not illogical to conclude that this may be significant

• cause of the difficulties in the present case. 
Thus, a refined mesh seems
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like an important next step in any computations for lifting flows with the

present method.

In order to accomplish the generation of a refined mesh one must

examine the present procedure and see if a better mesh generator can be

found. In the present mesh generation procedure for the lifting flow, the

plate is first established in the rectangular tunnel as a pure drag flow
and a mesh is generated. The plate is then tilted to the desire angle of

attack and the elements near separation are carried with it. The elements

at separation, particularly around the leading edge, can be very distorted

in the streamwise as well as the normal direction, although they are not

distorted in the transverse or y direction particularly. This distor-

tion may lead to difficulties in the algebraic equation set which is gener-

ated to solve the potential flow problem or may produce close to singular

Jacobians for the isoparametric transformations.

For further studies and as a second step, it would be appropriate to

implement a mesh generation scheme based, for example, on the ideas of

Thompson, et al. (1974). They demonstrated a method for automatic numerical

generation of a general curvilinear coordinate system with coordinte lines

coincident with all boundaries of a general multiconnected region contain-

ing any number of arbitrarily shaped bodies. They stated that no restric-

tions are placed on the shape of the boundaries and the method is not

restricted to two dimensions. aowever, it is not known if the method has

actually been implemented for a three dimensional flow. While the genera-

tion of a numerical mesh would in itself be expensive, the smooth shape and

regular coordinate system produced by such an automatic generation scheme

for curvilinear coordinates would allow the user to obtain a very accurate

and well formed finite element net by using various points on the curvi-

linear coordinates, translating them back to Cartesian coordinates and

establishing those as the corner and mid nodes of the finite elements. With

such a system and consistent with the available computation funding and

raw power, one could accomplish the generation of an adequate, refined and

well-formed finite element mesh. Under these conditions it would be appro-

priate to use the variant on the present iterative technique which is b

applied in the final example for the lifting flow. Namely, control the

tangent separation condition at a single point on the separation edge and
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otherwise adjust the separation velocity potential to produce a single

constant velocity on all streamlines.

A third and final alternative would be to follow on the discussion

O:N in Section 3.3 and to attempt to develop a formal analytic solution for the

velocity potential in the zone near the separation edge. This would have

to be an analytic three-dimensional solution in either physical or iso-

parametric space. If it could be found, it could be used to remove singu-

lar behavior from the finite element portion of the problem and thereby

allow the finite element solution to accurately reproduce the regular part

V of the flow. The development of such an analytical patch appears to be a

formidable task and has not been attempted in the present investigation

(see, however, Strang and Fix, 1973, for an outline of the general approach

for two-dimensions).

6.3 ALTERNATIVE FORMULATIONS

The method outlined in this work employs three-dimensional, 20 node

quadratic finite elements and a trial-free-boundary technique to solve high

speed free surface flows. As noted in Section 4.2.1, the present finite

element formulation when applied to a two-dimensional plane flow is consider-

ably more efficient than the finite difference calculations procedure out-

lined by Mogel and Street (1974). In addition, the finite element formula-

tion meets the crucial requirement of being able to adjust the node points

of the element grid to coincide with the curved and irregular boundaries of

the free surface. It has been made clear above, however, that considerable

grid refinement will be needed to make the present method an efficient and

satisfactory one for highly three-dimensional flows. The question arises

then as to whether or not there is a better alternative formulation which

would lead to a successful solution of nonlinear fully-cavitating flows.

Two alternative formulations come easily to mind and are discussed below.

The first is the use of C1 continuous finite elements with the hope that

these elements would provide higher accuracy at the separation edge. The

second method is the boundary integral equation method in which it is neces-

sary to solve for nodal unknowns only on the surface and not in the interior

of the flow.
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6.3.1 Other Finite Elements

The elements used in the present computations are C°  elements, that

is, they insure the continuity of the solution function across boundaries

of elements. However, the first derivatives are not necessarily continuous.

The present elements utiJ.ize quadratic interpolation functions. One can

define C finite elements with cubic interpolation functions. However,

there is no inherent gain by using cubic interpolation functions over simply

reducing the size of the quadratic interpolation function elements. Accord-

ingly, it does not seem profitable to define and use new C0  elements.
1On the other hand, one is tempted to define C cubic elements using

Hermite polynomials as described, for example, in Pinder and Gray (1977).

Hermite polynomials with an isoparametric approach have been applied in two-

dimensions. However, the process is inherently much more difficult than

that used here and it is not clear that the cost of using the Hermite ele-

ments will not be considerably greater than using the present C0 quadratic

elements. The major advantage of the Hermitian elements is that the unknowns

now involved include the unknown velocity potential $ and its first deriva-

tives (i.e., the flow velocities) at the corner node-points of the element.

This means, for example, that it would be possible to specify both the

velocity potential and the normal derivative of the velocity potential at

the separation point so as to satisfy both the constant pressure boundary

condition and the tangent separation condition simultaneously. Thus,

Hermitian elements would appear to be attractive. However, Strang and Fix

(1973) have conducted a numerical experiment on the behavior of various

elements in the neighborhood of a mixed boundary condition singularity of

the type encountered at separation in a free surface flow. Their test

indicate that the best accuracy can be obtained by using analytic patches

in the neighborhood of the singularity to remove the singularity so that

the finite element does not have to cope with it. On the other hand, a

startling result is that the standard Hermite cubics come out worse than the

simplest of linear elements with regard to error in the neighborhood of the

singularity. Strang and Fix point out that the cubics are too smooth to

cope with the singularity. It would appear then that the Hermitian elements

do not offer, at least at this time, an attractive alternative to the solu-

tion method used so far.
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6.3.2 The Boundary Integral Equation Method (BIEM)

Brebbia and Wrobel (1979) and Larock (1977) have discussed the applica-

tion of the boundary integral equation method to fluid flows. In the BIEM,

all computations deal directly with the domain boundaries, in this case the

tunnel walls, solid bodies and cavity surfaces, rather than requiring a

solution throughout the entire flow domain. If the BIEM is combined with

surface finite elements then one can utilize finite elements in much the

same way as they are used in the normal finite element method. That is, the

body, cavityand tunnel wall surfaces are represented by a set of finite
• elements, e.g., quadratic isoparametric elements, and formulation of the prob-

Clem produces a series of nodal unknowns on these surfaces only which may be

solved in the standard manner. One obvious advantage of th finite

elements is a potential substantial reduction in the number of nodal unknowns.

Larock (1977) focused his attention on jet and cavity flows and out-

lined the procedure that could be used for a simple two-dimensional jet flow.

The procedure does not differ in the large from the one used here, in that a

trial-free-boundary technique is used, a potential flow problem is solved

and the resulting velocity field is used to move the free surface to a new

trial location. The only difference lies in the method used solved for the

3' velocity potential and velocity used. BIEM does offer potential savings in

computer time. However, the problems which cause difficulties in the

present computation apparently still exist in the boundary integral equation

method.

Larock (1977) indicates that his formulation of the BIEM allows the

tangent separation boundary condition to be violated and it was only by

adjusting the velocity on the free streamline that he was able to drive the

normal velocity at separation to zero. This, unfortunately, is precisely

the same process that has been used in the present computation. Therefore,

it would appear that at the present stage the boundary integral equation

technique has the same failing as the finite element technique which is

implemented above. Accordingly, it is probable the BIE4 can be used only

when the flow field is essentially axisymmetric as in the present finite

element case or when sufficient grid refinement is made in the neighborhood

of separation. Thus, while the boundary integral equation technique should
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probably be further investigated for three-dimensional fully cavitating

flow, one must not expect it at the moment to yeild more than a slightly

more efficient computational technique and the difficulties encountered

in the present investigation will not be instantly overcome by shifting to

this new technique.
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7. SUMMARY AND FUTURE WORK

Based on potential flow theory, a finite element model was developed

for simulation of three-dimensional, fully-cavitating flows. A Riabouchinsky

image model of the flow was used. The trial-free-boundary approach was used

and effectively reduced the nonlinear potential flow problem to a linear one.

However, because the free surface shape, as well as the velocity potential,

is unknown, iterative solution of the linear problem is required.

Larock and Taylor (1976) solved a three-dimensional jet flow under

the influence of gravity by use of a method and computer program similar to

those employed herein. However, the present study is the first to deal with

a cavity flow and the first to conduct a detailed examination of the ability

of the finite element method to accurately represent separated flows. This

study has established the bases for evaluating the FEM and the separation

edge problems. The explicit role of the free surface as a characteristic

surface of a quasi-linear partial differential equation was demonstrated.

While this result is of no interest in analytic solution approaches, it is

crucial for numerical approaches and is at the core of the separation edge

problems.

VI, A unique weighting scheme for adjusting the free surface velocity

potential to meet the required tangent separation condition was devised.

The scheme works exceedingly well for slightly three-dimensional flows.

However, in highly three-dimensional flows it is probable that both a very

refined grid and a different weighting scheme will need to be used.

Both pure drag and lifting flow computations were made. For pure drag,

circular and elliptic plates in a water tunnel were studied. The iterative

procedure was stable and convergent. The solution accuracy was excellent

for the circular plate cases and acceptable for the elliptic plate cases.

One lifting flow configuration with a circular plate in a water tunnel was

computed. While a stable and converagent solution was again obtained, the

constant pressure condition on the free surface was not accurately satisfied.

An extensive review of the performance of the solution was conducted.

Several conclusions were drawn. First, the present iterative scheme does

not guarantee satisfaction of the constant pressure condition transversely
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across the free surface. However, this is of concern only in highly three-

*dimensional flows; e.g., the pure drag solutions studied gave quite accu-

rate answers, but the lifting flow solution did not. Second, grid refine-

ment (reduction of element size) in the streamwise direction and near

separation markedly improves the local quality of the solution, but has little

effect on global results, i.e., a , C, etc. Third, grid refinement in the

transverse direction (perpendicular to the free surface streamlines, but in

the free surface) will be necessary to achieve accurate results in highly

three-dimensional flows. (A relatively coarse grid has been used so far

because of cost.)

Among the alternative strategies for remedying the present problems,

only grid refinement or analytic patches to remove the singular nature of

in the neighborhood of the separation edge offer direct solution of the

difficulties. While the boundary integral equation method (BIEM) may reduce

computation cost and the difficulties associated with generating a "good"

finite element net, the BIEM appears to suffer the same weaknesses at

separation as the present method.

The simplest strategy for future study appears to be to generate a

highly refined FE mesh and then to solve again the present lifting flow case.

Use of the BIEM and grid refinement is the next most difficult strategy.

Finally, development of analytic solutions for the three-dimensional flow in

the neighborhood of separation and the use of such solutions with isopara-

metric elements are possible in principle, but are well beyond the present

state-of-the-art.
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APPENDIX 1

MESH GENERATION AND ELEMENT ORGANIZATION

One of the most time consuming tasks in the FEM is setting up the

geometric input for a not-so-regular domain, especially in three dimensions.
However, by use of a semi-automatic method, the geometric input for this

three dimensional cavitation flow (..e., plates in a rectangular water tunnel)

can be set up relatively painlessly. The flow domain is divided into two

parts, namely, a rod and the main flow section (see Figure A.1.1). The

tracking of the node numbers is accomplished by means of two three-dimensional

arrays, namely, MP (a,8,y) for the main flow and MPR (CL 8RYR) for the

rod. Here, (1, a and y are the three curvilinear "axes" for the main

flow as shown in Figure A.l.l(a) with maximum values of NROWS, NCOLS and

NDEEP respectively, while aR, 8R and YR are their counterparts for the

rod section as shown in Figure A.l.lb) with maximum values of NROWR, NCOLR

and NDEEPR respectively. Note that NDEEPR is function of the value of aR

(counting the "0" nodes). Therefore, with a given set of values of a

8 and y , one can pinpoint the node number. By means of this curvilinearII axes system, the free surface can be identified straight-forwardly, namely,

a - 1 and 8 > NFREE (Counting from separation where a equals NFREE). In

4 1 the present configuration, 8 and 8 coincide with the x-axis.
R

A.1.1 Pure Drag Case

Because of the symmetry in the flow field, only of the flow field

need be considered (refer to Figure A.1.2). The schematic grid is first

sketched by hand such that elements around the separation are smaller. The

size of the rod is set arbitrarily. Then, for each section of the main flow

in 8-direction, the height h is measured together with hI , h2 and h3

(only three layers are shown in this example).

The ratios

hl

r1 h

h
2

S2 (A. .l)
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and h 
3

r35

are computed. This represents the distance between layers in the n direc-

tion. Using ratios rI , r2 and r3 , planes for each y (at a discrete

value of 6 ) are discretized accordingly. The sumof all r ratios equals3unity, i.e., Z r i = 1.

i=l

A.1.2 Lifting Flow Case

Following the general procedure used in the pure drag case, one first

generates a pure-drag half-flow by imaging the quarter flow as shown in
Figure A.l.3. Then the plate is tilted to the desired angle of attack c-

AThe grid points are next moved proportionally to their locations with respect

to the separation edge and the fixed tunnel boundary as indicated by the
t dotted lines in Figure A.1.3. Figure A.1.4 shows a typical arrangement of

the grid at an angle of attack of 60 degrees.

By means of this procedure, one can generate a three dimensional,

lifting-flow grid relatively painlessly. However, elements around the lead-
ing edge might have shapes which are not "nice" in the context of the FEM.

It is, therefore, necessary to have the grid plotted and examined. If the

situation arises in which badly distorted elements occur, the grid is

adjusted semi-manually. As seen in Figure A.1.5, it is desirable to have

the internal angle 6i smaller. It is done by pivoting the imaginary line

A-A joining points T and B at some point and rotating the line to position

A'-A'. Then the intermediate nodes are moved porportionally on the line A'-A'.

The position of the pivot governs the relative movement of the points T and B.

For instance, if point B were to be fixed, the pivot is set at that point.

The input sequences and the program listings are given in a separate

Program Manual (Ko and Street, 1979). Therefore, they are not repeated here.

0
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APPENDIX 2

LARGE MATRIX EQUATION SOLVING ALGORITHM

As mentioned in Section 2, it is necessary to solve a large, sparse

j." system of algebraic equations. Due to the fact that the global stiffness

matrix, K,, in Equation 2.25 is positive definite and symmetric, one has

ii the liberty of choosing a direct method over an iterative method or vice

versa. The choice of one method over the other, generally, depends on the

availability of core storage and one's willingness to spend computing

time. For the direct method, the storage requirement depends on the band-

width of the coefficient matrix of the system and on a clever numbering

scheme of elements and nodes in the FEM formulation. In the present study,

a direct method using a frontal technique with Gaussian Elimination and an
~iterative technique with Conjugate Gradient method were tested. The itera-

tive Conjugate Gradient method (ICGM) as implemented here enjoys one signifi-

cant advantage, namely, the core storage is only a fixed multiple of the

number of unknowns and is independent of the numbering scheme. This

resulted in substantial savings in core storage compared to the direct

method. However, the overall computing time is longer in the problem tested

here for the ICGM.

In the FEM, the global stiffness matrix Kij in Equation 2.25 is

usually banded, but the band width depends on the type of elements used and

the numbering scheme. Often it is this global matrix together with fill-ins

which occur during application of direct methods, which require more core

storage than is available economically or, often, actually. However, Kij

need not be stored. It is the elemental stiffness matrices K in
ij

Eqaution 2.22 which must be saved along with the nodal connection matrix v

Both the direct and the iterative methods operate from this same data base.

A.2.1 The Direct Method by Gaussian Elimination

The solution of the FEM formulation equation set by Gaussian Elimina-

tion is well known (Irons, 1970 and Zienkiewicz, 1971). The method described

here appears in a program supplied by C. Taylor, University of Swansea, U.K.

(see, e.g., Larock and Taylor, 1976). A modified version of this program

was used for the present flow problems.
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The elemental stiffness matrices are generated and stored on disk.

They are read into core one at a time filling the coefficient matrix in

a wedge area until the matrix just read in does not affect the first row

(or equation) in the "wedge" (see Fig. A.2.1), which moves along the diagonal

and covers the upper half of the coefficients present in the global stiffness

matrix, then Gaussian Elimination is performed on the first row. The

resulting firqt row is saved on another disk file and the "wedge" is moved

down one row. More elemental matrices are then read in. This procedure is

repeated n times, where n is the total number of nodes in the problem.

Next, back substitution can be performed by recalling the rows stored on

the second disk file one at a time in inverse order of storage (last in,

first out). The core storage requirement of the "wedge" depends on the

bandwidth which in turn depends on the element and nodal numbering shcemes.

No pivoting is performed. This may lead to loss of accuracy in some problems,

but no difficulties were encountered in the present cases with up to 3137

node points.

A.2.2 Iterative Conjugate Gradient Method

According to Concus, et al. (1975), the Conjugate Gradient method

was proposed by Hestenes and Stiefel in 1952. It was not until the early

1970's that it was found to be highly effective as an iterative procedure

for solving large sparse systems of linear equations. The method is based

on splitting off from the original coefficient matrix a symmetric, positive-

definite matrix that is more easily solved, and then accelerating the iter-

ation using conjugate gradients. The convergence of the CG method is assured

for matrices of the type generated by the FEM formulation described above

(cf., Concus, et al. 1975). The CG method is described briefly below.

Consider the system of equations

Ax - c (A.2.1)

where A is an £ x 9 , symmetric, positive-definite matrix. It is split

such that

A M- N (A.2.2)
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where M is positive-definite and symmetric and N is symmetric. Thus,

from (A.2.1) Mx - Nx + c . It is assumed that

Mx = d

can be solved more easily than (A.2.1).

Following Concus, et al. (1975), the CG algorithm can be stated as

follows:

Let x(O ) and p(-l) be any arbitrary vectors. For k = 0, 1, 2, ...

(1) Solve

(k) (k)I.Mz c A

(2) Compute

t )T
(k) (k)

= z M k>i
k (k-l)T Mz(k-)

z

(k) = (k) (k-1)

p = z kP-S._

(3) Compute

z (k)T Mz (k)
ak = (k)T Ap(k)

and

x(k+l) x x(k) + akP (k)-

The above algorithm is very simple and very easily programmed. The maximum

value of akp(k) in step 3 above is used as the maximum error between iter-

ations. Instead of computing the right-hand side of step 1 explicitly, one

could use the following recursive form
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c Ax '] = ~c Axk] - ~ (.k) (A. 2.3)

The greatest advantage for the CG method is that one has complete

liberty in choosing the matrix M in (A.2.2). If

M - Diag (A) ,(A.2.4)

the vector z can be very easily found. The matrix A is used only once

every iteration except for the starting iteration. If A is the coefficient

(global stiffness) matrix K in (2.25)

M = Diag (K) , (A.2.5)

- c = R , and the final x is the solution function 0 in (2.25). In
(k)

computing Ap in step 3 above, one need only use the elemental stiffness

matrices Kre)  from (2.22) as follows. For each element, let S(e) be

defined as the selection matrix of dimension n x Z with

th (e)i row of S = ij) (A.2.6)

where

(1 if jVi 
A27

D 0 otherwise (A.2.7)

and i(j) are all distinct for i = 1 , ... , n ; then it can be easily

seen that

AP (k ) = Kp (k)  K X (e) S (e) p (k) (A.2.8)

(e)

However, the elemental stiffness matrices need to be preprocessed to incor-

porate the Dirichlet boundary conditions in (2.18) before the start of the

CG iterations.
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Let s be the set of nodes on S with $ the corresponding

boundary values. Before the CG method can be applied directly, the

elemental matrices (2.22) have to be preprocessed as follows:

(i) Set R K( for all i -1,.. n
V i ii

such that Vi E s (A.2.9)

(ii) For i - 1, 2, ..., n, such that Vi E s

set Rv. - R K (v) for all j 1, . nset j j J "'

such that (Vj s and V. # (A.2.10)

(e) .
(iii) Set K)ij =0 for all i, j = , 2, ..., n

" such that i $ j and (V C s or V. e s) (A.2.11)
i Ii

Then the processed elemental and the global matrix equations become

.-(e) -(e) = -(e) (A.2.12)

(A.2.13)

respectively.

It can be easily shown that the submatrix of K (with the known values

deleted) is essentially a principal submatrix of K and is therefore

symmetric and positive-definite. Accordingly, the CG algorithm can be

applied to solve (A.2.13). The starting vector x , of course, has some

known values, such that

I ifor all i E SI1

xi " (A.2.14)

best estimates otherwise
or simply, 0
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A.2.3 Numerical Test

The CG algorithm and the direct solution method were tested on the

IBM 370/168 of the Stanford Linear Accelerator Center Triplex System. For

a problem with 1713 nodes, 304 elements and 163 Dirichlet boundary nodes,

the estimated bandwidth of K was 160. The CG algorithm took approximately

0.5 sec per iteration. Approximately 40 percent of this time was used in

the IBM 1/0 handling routine, 30 percent in the main program, and 30 percent

in the system routines other than I/0. In the case of double precision

arithmetic (56 binary bits), the solution converged to machine precision in

about 300 iterations. Figure A.2.2 shows the sequence of convergence.

For the present CG algorithm, one must save five vectors of the size

of the total number of nodes in the FEM formulation. In this test case,

the CG savings in core storage as compared to the direct method outlined

in Section A.2.1 was 40 percent. However, the total computing time for CG

as compared to that for the direct method was approximately 1.5:1. For

another larger problem with 2647 nodes, 496 elements, 303 Dirichlet boundary

nodes, and an estimated bandwidth of 260 for K , the CG savings in core

storage is approximately 60 percent.
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Figure 5.5 Finite element grid and configuration of three-dimensional
Ufting cavity flow; angle of attack - 600
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Figure 6.1 Grid refinement at separation
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Figure A.1.l Curvilinear axes for node numbering: (a) main flow section
(b) rod section
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Figure A.l.4 Top view of a typical grid for lifting flow; angle of attack
of 60 °
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Figure A.1l.5 Schematic of semi-manual grid adjustment at the separation
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n - number of node points

(1) - disk file for the element stiffness matrices

(2) - disk file for temporary storage

'q- core storage required

{p} - nodal connection matrix and elemental stiffness matrix for
Ot element

r=resuiting values for the r thequation of th2 Global Stiffness
Matrix

Figure A-2.1 Schematic diagram showing the data structure for direct method
wh~ich uses Gaussian El.imination
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